Focussed Ion-Beams for Nanofabrication of Superconducting Devices: Josephson Arrays, Nanowires and Flux-Tuneable r.f. Resonators

Paul Warburton University College London

Nanofabrication at UCL

- Two Zeiss "cross-beam" Ga FIBs
- Zeiss Ne / He FIB

Raith 150^{TWO} 30 kV EBL
Elionix 100 kV EBL

Which Beam to Use?

	Neon FIB	Gallium FIB	Helium FIB	E-Beam Lithography	EUV Optical Lithography
Cost (order of magnitude, £)	10 ⁶	10 ⁶	10 ⁶	10 ⁶	10 ⁸
Minimum feature size (nm)	6	30	6	10	20
Sample poisoning	Acceptable	Bad	Acceptable	Excellent	Excellent
Fabrication throughput	Good	Very good	Poor	Very good	Excellent
Ease of 3-D fabrication	Good	Good	Good	Limited	Limited
Cost of process	Minimal	Minimal	Minimal	High	High
Compatability with silicon	Yes	Yes	No	Yes	Yes

Conventional mantra for Ga-FIB:

"Always use EBL unless there is a compelling reason not to!"

Which Beam to Use?

	Neon FIB	Gallium FIB	Helium FIB	E-Beam Lithography	EUV Optical Lithography
Cost (order of magnitude, £)	10 ⁶	10 ⁶	10 ⁶	10 ⁶	10 ⁸
Minimum feature size (nm)	6	30	6	10	20
Sample poisoning	Acceptable	Bad	Acceptable	Excellent	Excellent
Fabrication throughput	Good	Very good	Poor	Very good	Excellent
Ease of 3-D fabrication	Good	Good	Good	Limited	Limited
Cost of process	Minimal	Minimal	Minimal	High	High
Compatability with silicon	Yes	Yes	No	Yes	Yes

Conventional mantra for Ga-FIB:

"Always use EBL unless there is a compelling reason not to!"

e.g.: Three-Dimensional Nanofabrication

Which Beam to Use?

	Neon FIB	Gallium FIB	Helium FIB	E-Beam Lithography	EUV Optical Lithography
Cost (order of magnitude, £)	10 ⁶	10 ⁶	10 ⁶	10 ⁶	10 ⁸
Minimum feature size (nm)	6	30	6	10	20
Sample poisoning	Acceptable	Bad	Acceptable	Excellent	Excellent
Fabrication throughput	Good	Very good	Poor	Very good	Excellent
Ease of 3-D fabrication	Good	Good	Good	Limited	Limited
Cost of process	Minimal	Minimal	Minimal	High	High
Compatability with silicon	Yes	Yes	No	Yes	Yes

Conventional mantra for Ga-FIB:

"Always use EBL unless there is a compelling reason not to!"

e.g.: Three-Dimensional Nanofabrication

Does the mantra change for Neon-FIB?

Format of this Talk

• Three-dimensional nanofabrication with Ga-FIB

process variability, sample damage...

• Neon-FIB

(i) Tuneable niobium r.f. resonators for spin qubit readout

(ii) NbN coherent quantum phase-slip nanowires

Format of this Talk

• Three-dimensional nanofabrication with Ga-FIB

process variability, sample damage...

• Neon-FIB

(i) Tuneable niobium r.f. resonators for spin qubit readout

(ii) NbN coherent quantum phase-slip nanowires

3-D Ga-FIB Nanofabrication

Tl₂Ba₂CaCu₂O₈ intrinsic junction stack by lateral Ga-FIB milling

ZnO tetrapod: four-terminal superconducting contacts by Ga-FIB deposition

Ga Implantation in TI2Ba2CaCu2O8

Ga-FIB-Deposited Nanomechanics

Radially-Varying Young's Modulus

Format of this Talk

• Three-dimensional nanofabrication with Ga-FIB

process variability, sample damage...

• Neon-FIB

(i) Tuneable niobium r.f. resonators for spin qubit readout

(ii) NbN coherent quantum phase-slip nanowires

Readout of Spin Qubits

Readout of Spin Qubits

Can we make the superconducting resonator *tuneable*?

Tuneable Readout of Spin Qubits

Challenge: High Q in field up to ~ 100 mT

e.g. clock transitions in Bi-doped Si – Wolfowicz et al. Nature Nanotech. 8 561 (2013)

UCL

Milling with Neon

	helium	neon	gallium
Au Sputter yield (30 kV)	0.153	I.78	3.9
Al Sputter yield (30 kV)	0.06	4.39	17.4
Current	0.1 - 2 pA	0.2 - 5 pA	I pA - 100 nA
Minimum beam diameter	0.5 nm	2 nm	5 nm
Sample damage	Amorphisation	Amorphisation	Amorphisation and poisoning
Min Feature size	<10nm?	<20nm	20-40nm

EBL / Neon-FIB Mix-and-Match

(a)

O.W. Kennedy, PAW et al. Phys. Rev. App. 11, 014006 (2019)

Nb Tuneable Resonator

T = 300 mK $\Delta f_0/f_0$ = 0.81% in 10 μT Q = 25,000 Flux focussing factor: 124 β_L>3.4

Nb Tuneable Resonator

Nb Tuneable Resonator

Format of this Talk

• Three-dimensional nanofabrication with Ga-FIB

process variability, sample damage...

• Neon-FIB

(i) Tuneable niobium r.f. resonators for spin qubit readout

(ii) NbN coherent quantum phase-slip nanowires

Coherent Quantum Phase-Slip

Josephson Junction

Coherent tunnelling of electric charge through the insulating barrier

Coherent Quantum Phase-Slip

Josephson Junction

Quantum Phase-Slip Nanowire

Coherent tunnelling of electric charge through the insulating barrier

Coherent tunnelling of *magnetic flux* through the *superconducting* barrier

Coherent Quantum Phase-Slip

Josephson Junction

Quantum Phase-Slip Nanowire

Coherent tunnelling of electric charge through the insulating barrier

Coherent tunnelling of *magnetic flux* through the *superconducting* barrier

.... Requires highly disordered superconductor

Coherent Quantum Phase-Slip

Embedding Nanowires in Resonators

Nanowire Width = 100 nm

J. Burnett, PAW et al. Phys. Rev. App. 8, 014039 (2017)

Q ≈ 1000

Nanowire Width = 35 nm

Evidence of incoherent quantum phase slips

Conclusions

• Neon-FIB milling for Nb Dayem bridges

Resonator Q > 10,000 for fields up to 60 mT

• Neon-FIB milling for NbN nanowires

Resonator $Q \sim 1,000$

Smaller dimensions and lower T needed for CQPS

Acknowledgements

Marion Sourribes Huan Wang Sajid Saleem Jon Fenton Nic Constantino Jonathan Burnett **Oscar Kennedy** Jamie Potter

Engineering and Physical Sciences Research Council

The Leverhulme Trust

p.warburton@ucl.ac.uk