YBa²Cu³O⁷ and Nb NanoSQUIDs for the Investigation of Magnetization Reversal of Individual Magnetic Nanoparticles

B. Müller¹, J. Lin, J. Linek¹, M. Karrer¹, F. Limberger¹, L. Koch¹, E. Goldobin¹, R. Kleiner¹, <u>D. Koelle¹</u>, V. Morosh², T. Weimann², O. F. Kieler², J. Sesé³, M. J. Martínez-Pérez³

¹Physikalisches Institut and CQ in LISA⁺, Universität Tübingen, Tübingen, Germany

²Fachbereich 2.4, Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany

³Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza – CSIC, Zaragoza, Spain

Abstract— We report on the fabrication, performance and application of sensitive YBa²Cu³O⁷ (YBCO) and Nb nanoSQUIDs to magnetization reversal measurements of individual magnetic nanoparticles. The YBCO SQUIDs are based on grain boundary Josephson junctions and are patterned in a single layer of epitaxially grown YBCO films by Ga focused ion beam milling. The Nb SQUIDs contain sandwich-type Josephson junctions with normal conducting HfTi barriers; they are fabricated with a multilayer technology that includes patterning by e-beam lithography and a combination of milling techniques and chemical-mechanical polishing. Due to the small inductance of the SQUID loops, ultralow white flux noise at 4.2 K can be achieved, which yields spin sensitivities of down to a few Bohr magnetons per unit bandwidth for a magnetic nanoparticle placed at 10 nm distance to the SQUID loop.

Keywords (Index Terms) — NanoSQUID; YBCO; Nb; focused ion beam milling; flux noise; magnetic nanoparticle.

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Selected August 5, 2019. Reference STP649; invited presentation 1-SQ-I-8 given at ISEC, 28 July-1 August 2019, Riverside, USA.