

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

YBa₂Cu₃O_{7-x} film with Ba₂Y(Nb,Ta)O₆ nanoinclusions for high field applications

Giuseppe Celentano

ENEA Frascati Research Centre Fusion and Technology for Nuclear Safety Department Superconductivity Laboratory

Glasgow, 2019 September 3rd

14th European Conference on Applied Superconductivity

Team of work

F. Rizzo, A. Augieri, V. Galluzzi, A. Mancini, M. De Angelis, A. Rufoloni, A. Vannozzi, V. Pinto, A. Angrisani Armenio

A. Meledin*

J. Feigham, A. Kursumovic, J.L. Driscoll

UNIVERSITY OF CAMBRIDGE

E. Silva,N. Pompeo,K. Torokhtii,A. Frolova,L. Piperno,G. Sotgiu,

T. Petrisor jr, M. Nasui, L. Ciontea, T. Petrisor

Acknowledgement for the financial support:

OUTLINE

Introduction

- Interest in high field applications for REBCO;
- Nb- and Ta-based APC for REBCO: state-of-the-art

Mixed doping by $Ba_2(Y,Ta)O_6 + Ba_2(Y,Nb)O_6$: 2.5 mol.% + 2.5 mol.%

- BYTO single vs mixed BYTO + BYNO doping;
- Defects landscape tunability by growth rate;

Conclusions & Perspectives

Intro – High fields: new perspectives of REBCO applications

Effective technology for control of pinning and J_c optimization @ LN2 and low/mid field

APC by incorporation of BaMO₃ (M= Zr, Hf, Sn) Self-assembled columnar structures/*c* – axis correlated defects

Nuclear fusion and accelerators requests are extremely demanding

Nb₃Sn technology cannot fulfill these needs

For **REBCO** this is a unique opportunity to extend its **applicability to high field magnets sector**

Intro – What we know @ Low T / High field conditions for REBCO

APC approach is still effective: APC + additional defects spontaneously generated by APC/YBCO interfacial strain accommodation

G. Celentano - Glasgow, September 3rd 2019

Very thin rods/columns + segregated RE₂O₃ CSD-YBCO with BZO np

Little is known so far: REBCO poorly investigat ed in low T/high field conditions More studies are needed 5

Intro: Ba₂YTaO₆ and Ba₂YNbO₆ doping: great performances at LN2

Double perovskite; cubic - Fm3m; *a* = 0.84 nm;

- Great phase stability (chemically inert w.r.t. YBCO);
- large mismatch w.r.t. YBCO: in plane ~ 9.4%; *c*-axis ~ 8.3%;
- Nb⁺⁵ = Ta⁺⁵ = 0.78 Å (Zr⁺⁴ = 0.86 Å)
- Ta_2O_5 (Nb₂O₅) lower melting *T* than ZrO₂;
- larger ion mobility than Zr is expected;

G. Ercolano et al. SuST 23 (2010)
G. Wee et al. PRB 81 (2010)
G. Ercolano et al. SuST 24 (2011)

Ba₂RETaO₆ (RE=Yb, Er, Gd)

Ba₂YNbO₆

dense and fine **nanorods** $d \approx 10 \text{ nm}, B_{\phi} \approx 2 - 5 \text{ T}$ G. Ercolano et al. JAP (2014)

Intro: Nb and Ta- based double doping

More complex defect landscape Mixed Ba₂YNbO₆ + Ba₂YTaO₆ doping

G. Celentano - Glasgow, September 3rd 2019

OUTLINE

Mixed doping by $Ba_2(Y,Ta)O_6 + Ba_2(Y,Nb)O_6$: 2.5 mol.% + 2.5 mol.%

- BYTO single vs mixed BYTO + BYNO doping;
- Defects landscape tunability by growth rate;

PLD growth of YBa₂Cu₃O_{7-x} + tantalate/niobiate based APCs

Single (BYTO) vs balanced mixed doping **Film Deposition conditions YBCO** composite targets Vacuum (~10⁻⁶ mTorr) 0, 290 mTorr **O**₂ 570 Torr **YBCO** : Ba_2YTaO_6 5 mol. % *T*d = 815-870 YBCO : Ba_2YTaO_6 2.5 mol. % + Ba_2YNbO_6 2.5 mol. *T*a = 450 Best *T*_c ≈ 89 K @ *T*_d = 840 °C Deposition Annealing time YBCO Normalized Resistance, R/R(100 K) **(BCO-BYNTO** PLD setup 0.8 YBCO-BYTC Film thickness $\approx 200 \text{ nm}$ XeCl Excimer Laser 0.6 Substrate: (00/) SrTiO₃ $\lambda = 308 \text{ nm}$ Growth rate, $\rho \approx 0.3$ nm s⁻¹ $f_{1} = 10 \text{ Hz}$ 0.4 fluence $\approx 1.5 - 2 \text{ J/cm}^2$ 0.2 92 86 88 90 94 96 98

Temperature (K)

BYTO 2.5 mol.% + BYNO 2.5 mol.% / BYTO 5 mol.%: structural properties

BYTO 2.5 mol.% + BYNO 2.5 mol.%: TEM/EDX

EDX elemental maps: Excess of Ta and Nb is present in the columns

- Continue splayed columns are present
- $(001)_{BYNTO} / (001)_{YBCO},$ $(100)_{BYNTO} / (100)_{YBCO}$
- High density of Y₂O₃ nanoparticles is recognized

- Y₂O₃ nanoparticles
- size ≤ 10 nm;
- structural relationship: $(001)_{Y2O3}//(001)_{YBCO}$, $(110)_{Y2O3}//(100)_{YBCO}$

Column size $d \sim 5$ nm Inter-column distance ~ 20 nm $(n \sim 2500 \ \mu m^{-2}, B_{\phi} \approx 5.2 \text{ T})$

BYTO 5 mol.%: TEM/EDX

Two type of columnar structures:

- continuous through the full YBCO thickness
- and truncated, some of them with hammerhead

BYTO 5 mol.%: TEM/EDX

Two type of columnar structures:
continuous through the full YBCO thickness
and truncated, some of them with hammerhead

EDX elemental maps: Excess of Ta is present in the column hammerheads

BYTO 2.5 mol.% + BYNO 2.5 mol.% / BYTO 5 mol.%: J_c behaviour @ 77 K

BYTO 2.5 mol.% + BYNO 2.5 mol.% / BYTO 5 mol.%: *J*_C behaviour @ intermediate *T*

BYTO 2.5 mol.% + BYNO 2.5 mol.% / BYTO 5 mol.%: J_c behaviour @ low T

Both **BYTO** and **BYNTO** largely improve YBCO performances in whole *T*- and *B*- range (@ 10 K, 12 T $J_c(BYNTO) = 3x J_c(YBCO)$

- **BYNTO** & **BYTO** similar low field behaviour (up to $B \approx 3 4 \text{ T}$)
- **BYNTO** has **better** *high-field* behaviour than **BYTO** (@ 10 K, 12 T $J_c(BYNTO) = 1.7x J_c(BYTO)$)

BYTO 2.5 mol.% + BYNO 2.5 mol.% / BYTO 5 mol.%: Pinning Force Density, F_p

BYTO 2.5 mol.% + BYNO 2.5 mol.% / BYTO 5 mol.%: F_{p} behaviour @ low T

Conclusions 1/2

Mixed doping by $Ba_2(Y,Ta)O_6 + Ba_2(Y,Nb)O_6$: 2.5 mol.% + 2.5 mol.%

- BYTO single vs mixed BYTO + BYNO doping;

BYNTO exhibits the best J_c in extended *T* and *B* ranges

This results from a synergetic combination of:

- density of columns;
- **size** of columns;
- continuity;
- splay;
- Y₂O₃ nanoparticles decorating BYNTO columns;
- CuO intergrowth density;

This landscape provide an **effective contribution to vortex pinning at low** *T* < 30 K

Can the defect landscape be tuned?

key factors (by comparison with BYTO)

Mixed doping BYTO 2.5% + BYNO 2.5%: analysis of the film growth rate

- Film growth rate (ρ) tuned in the range $\rho \approx 0.02 1.8$ nm s⁻¹ by:
- laser repetition rate;
- laser wavelength;

rate per pulse @248 nm ≈ 3 × @308 nm

Growth rate (nm/s)	0.02	0.3	1.4
(
с _{үвсо} (Å ± 0.007)	11.696	11.692	11.714
a _{BY(N)TO} (Å ± 0.01)	8.31	8,30	8.36
FWHM (005)	0.12	0.13	0.13

With higher rates:

- higher strain in YBCO;
- change in BYNTO;
- lower T_c ;

more details will be provided by F. Rizzo in his talk, today

G. Celentano - Glasgow, September 3rd 2019

Conclusions 2/2

Mixed doping by $Ba_2(Y,Ta)O_6 + Ba_2(Y,Nb)O_6$: 2.5 mol.% + 2.5 mol.%

- BYTO single vs mixed BYTO + BYNO doping;

BYNTO exhibits the best in extended angular, T and B ranges

The landscape provides an effective contribution to vortex pinning at low T < 30 K

- Defects landscape tunability by growth rate;

Very low rate (0.02 nm/s \leftarrow): continuous columns with reduced density and increased diameter + Y_2O_3 nanoparticles **high rate (\rightarrow 1.8 nm/s)**: ab-plane platelets + c-axis rods

crossing 0.3 - 1.1 nm/s high performances in the whole T-range

Growth rates (nm/s)	High T	low T
low rates		()
intermediate (0.3-1.1)		
high rates		\odot

Thank you for your attention

