



### Progress in development of high-performance REBCO tapes and wires

Venkat Selvamanickam

Department of Mechanical Engineering Advanced Manufacturing Institute Texas Center for Superconductivity University of Houston, Houston, TX, USA



#### UNIVERSITY of **HOUSTON**



#### Acknowledgments

- R. Pratap, G. Majkic, E. Galstyan, M. Kochat, W. Luo, A. Ben Yahia, V. Mohan, R. Jain, S. Chen of **University of Houston**
- S. Kar and J. Sandra of AMPeers
- High-field measurements at **LBNL** by H. Highley, X. Wang, S. Prestemon
- Support for high-field measurements at NHMFL provided by J. Jaroszynski and D. Abraimov
- <u>Funding</u>: DOE Advanced Manufacturing Office, DOE Office High Energy Physics, DOE High Energy Physics SBIR





### Outline

- Improving Performance of REBCO Tapes at 65 K, Low-fields
- Improving Performance of REBCO Tapes in High Magnetic Fields at 4.2K
- Development of In-line and Continuous Quality-Control Tools for High-yield Manufacturing
- Symmetric Tapes for round REBCO wires for high J<sub>e</sub> with diameter
  2 mm
- Bend tolerance and high-field performance of High  $\rm J_e\,STAR$  REBCO Wires
- Status and Next Steps







### Two primary applications driving REBCO development

High Temperature, low-medium field

65K – 77K, 1 – 3 T



Next-generation Electric Machines



ARC, Courtesy Commonwealth Fusion Systems

Magnets for Accelerators, Fusion







# Improving Performance of REBCO Tapes at 65 K, Low-fields



UNIVERSITY of HOUSTON



### Advanced HTS Wire Development in DOE-AMO Nextgeneration Electric Machines (NGEM) Program

|                                          | Prod.<br>Tape now | AMO NGEM2<br>Target Tape |
|------------------------------------------|-------------------|--------------------------|
| Ic @ 65 K, 1.5 T (A/cm)                  | 340               | 1440                     |
| Tape quantity for<br>5.5 MW motor (km)   | 5.9               | 1.3                      |
| Tape cost for 5.5 MW<br>motor (\$(,000)) | 236               | 26                       |
| % of motor cost                          | 67%               | 8%                       |



Extending nanocolumn-engineered REBCO films from 1.7 to 5µm to meet goal



### UH Advanced MOCVD system for high performance, low-cost, high-yield production

- New reactor to address all deficiencies of current production tools designs
  - 5µm thick films & 10X BZO density : Excellent control (0.1°C) of tape temperature by Direct Tape Heating and Direct Tape Temperature monitoring
  - 5X precursor-to-film conversion efficiency: Low volume, laminar flow reactor



T<sub>c</sub>suh

Precursor-to-film conversion efficiency already increased 4X to 46% by Advanced MOCVD  $\rightarrow$  3X reduction in <u>total</u> tape cost

#### UNIVERSITY of HOUSTON



# 4.6 µm thick film deposited by Advanced MOCVD in a single pass with purely c-axis oriented REBCO



Previous 5 µm REBCO film by conventional MOCVD made in 5 passes

4-5 μm REBCO film by Advanced MOCVD in 1 pass

Routinely fabricating tapes with 4 – 5  $\mu$ m thick films in single pass by Advanced MOCVD







UNIVERSITY of HOUSTON



# Critical currents over 1600 A/12 mm achieved in thick films made by Advanced MOCVD





UNIVERSITY of HOUSTON



### Well aligned BZO nanocolumns throughout 4.2 µm thick HTS films by Advanced MOCVD





F

UNIVERSITY of HOUSTON



# Effect of film thickness on in-field critical current density of 5% Zr-doped tapes at 65 K



- At 65 K, 1.5 T (B // c-axis) ,  $J_c = 2.6 3 \text{ MA/cm}^2$  with all film thickness
- In 4.8  $\mu m$  film,  $J_c 3 MA/cm^2 = 1734 A/12 mm$  (record high current).
  - *F<sub>p</sub>*~ 87 *GN/m*<sup>3</sup>



Ţ

10

#### UNIVERSITY of HOUSTON



# Effect of Zr concentration on in-field critical current density of 4+ µm films at 65 K



5% Zr-doped films optimum below 5 T 15% Zr-doped films better above 5 T







| Feature                          | 5% Zr | 15 % Zr |
|----------------------------------|-------|---------|
| Nanocolumn spacing (nm)          | 22    | 17      |
| Nanocolumn density<br>(rods/μm²) | 2066  | 3460    |
| Matching field (T)               | 4.2   | 7.2     |



F

#### UNIVERSITY of HOUSTON



# Effect of Zr concentration on in-field critical current density at 65 K



|                                     | 0% Zr | 5% Zr | 15% Zr |
|-------------------------------------|-------|-------|--------|
| Out-of-plane<br>texture (°)         | 0.9   | 1.1   | 1.4    |
| In-plane<br>texture (°)             | 2.3   | 3.4   | 5.5    |
| (GdY)BCO<br>lattice<br>constant (Å) | 11.68 | 11.73 | 11.75  |
| (Ba – Zr)/Cu                        | 0.65  | 0.66  | 0.70   |

Lattice parameter increase, texture deterioration in 15% Zr suppress  $J_c$  at 65 K, 0 T but near-constant  $J_c$  up to 6 T.



UNIVERSITY of HOUSTON



### Critical current > 1440 A/cm @ 65K, 1.5T – Met DOE Advanced Manufacturing Office milestone



5% Zr-added thick film REBCO tapes yield the best performance at 65 K, 1.5 T - **4.4X critical current of commercial REBCO tape** 







## Improving Performance of REBCO Tapes in High Magnetic Fields at 4.2K



#### UNIVERSITY of HOUSTON



### REBCO tapes for high fields at 4.2K-20 K for High Energy Accelerators and Compact Fusion Systems





HTS operating at 20+T enables 10X smaller fusion energy systems and compact high energy accelerators



🔷 Nb-Ti operating dipoles; 🌒 Nb3Sn cos🎖 test dipoles 📲 Nb3Sn block test dipoles 📫 Nb3Sn cos🖇 LARP QUADs

Year

UNIVERSITY of **HOUSTON** 



# Effect of dopant concentration on in-field performance of 4+µm thick film tapes at 4.2 K



15% Zr-doped tapes superior at all fields above 2 T at 4.2 K



UNIVERSITY of HOUSTON



# Influence of barium content at constant 15% Zr on tape performance at 4.2K,13T



Higher density of very fine BZO with increasing Ba  $\rightarrow$  improved pinning Too high Ba  $\rightarrow$  degradation of REBCO texture, too high strain in REBCO



F

#### UNIVERSITY of HOUSTON



Influence of Ba content on self-field J<sub>c</sub> of 4+ μm 15% Zr-doped (Gd,Y)BCO





F

#### UNIVERSITY of HOUSTON



# Transport $J_c$ of 4+ $\mu$ m thick film with high BZO density comparable to 1 $\mu$ m thick films



Similar  $J_c$  in all tapes > 8 T at 4.2 K

Maximum pinning force of 4.2 $\mu$ m thick film REBCO tape = 1.86 TN/m<sup>3</sup> Maximum pinning force of 1 $\mu$ m thick film REBCO tape = 1.76 TN/m<sup>3</sup>

![](_page_19_Picture_7.jpeg)

UNIVERSITY of **HOUSTON** 

![](_page_20_Picture_2.jpeg)

# Thick film 15% Zr REBCO tapes made by Advanced MOCVD exhibit very high $J_e$ at 4.2K

![](_page_20_Figure_4.jpeg)

Supercond. Sci. Technol. 31 10LT01 (2018).

![](_page_20_Picture_6.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_21_Picture_2.jpeg)

### Influence of Ba content on self-field $J_c$ of 4+ $\mu$ m 15% Hfdoped (Gd,Y)BCO

| (NA/CHI/CHI/CHI/CHI/CHI/CHI/CHI/CHI/CHI/CHI   |           |          |                        |          | / (arb.units) | 5000<br>0000<br>5000<br>0000 |          |                     |             | 1.97<br>2.02<br>2.07<br>2.12 |
|-----------------------------------------------|-----------|----------|------------------------|----------|---------------|------------------------------|----------|---------------------|-------------|------------------------------|
| 0.6<br>0.4<br>0.2<br>0.2<br>0<br>1.92<br>1.97 | 2.02      | 2.07     | 2.12                   | 2.17     | Intensity     | 0000<br>5000<br>0            | 45       | 46<br><b>2 thet</b> | 47<br>a (°) | 48                           |
| Ba co                                         | ompos     | sitional | ratio                  |          | (.            | 6                            |          |                     |             |                              |
| Ba content in prec                            | ursor     | Avera    | i <mark>ge (B</mark> a | a-Hf)/Cu | Ξ             | 5                            |          |                     |             |                              |
| 1.97                                          |           |          | 0.66                   |          | H             | 4                            |          |                     |             |                              |
| 2.02                                          |           |          | 0.68                   |          |               | 3                            |          |                     |             |                              |
| 2.07                                          | 2.07 0.69 |          | 0.69                   |          | lre           | 5                            | • out-of | -plane [005         | ] 🔺 in-pla  | ne [103]                     |
| 2.12                                          |           |          | 0.70                   |          | xtr           | 2                            |          |                     |             |                              |
|                                               |           |          |                        |          | ē.            |                              |          |                     |             |                              |

0

1.95

Compared to 15% Zr-doped films, with increase in Ba content, no a-grains, no increase in c-lattice constant and no change in texture in 15% Hf-doped films.

2 2.05 2.1 2.15 Ba content in precursor

48

![](_page_21_Picture_7.jpeg)

Ŧ

AMAIL Advanced Manufacturing Institute

# Influence of Ba content on magnetization $J_c$ at 4.2 K, 13 T of 15% Hf-doped (Gd,Y)BCO

![](_page_22_Figure_3.jpeg)

Wider compositional range available with 15% Hf doping for high Jc at 4.2 K

![](_page_22_Picture_5.jpeg)

F

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

## Development of In-line and Continuous Quality-Control Tools for High-yield Manufacturing

![](_page_23_Picture_4.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_24_Picture_2.jpeg)

# Pilot-scale Advanced MOCVD built and commissioned for wire manufacturing

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_6.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_25_Picture_2.jpeg)

Magnetization J<sub>c</sub> at

# Compositional control of REBCO film important for high in-field $\mathbf{J}_{\mathbf{c}}$

![](_page_25_Figure_4.jpeg)

Non-destructive method needed for rapid evaluation of REBCO film composition during manufacturing of long tapes

![](_page_25_Picture_6.jpeg)

F

UNIVERSITY of HOUSTON

![](_page_26_Picture_2.jpeg)

# 2D-XRD: Rapid non-destructive method to evaluate REBCO film composition

![](_page_26_Figure_4.jpeg)

- Streaking of BZO (101) peak towards REBCO (103) peak
- C-axis lattice mismatch between REBCO and BZO decreases with increasing Ba/Cu composition

![](_page_26_Picture_7.jpeg)

UNIVERSITY of HOUSTON

![](_page_27_Picture_2.jpeg)

# 2D-XRD: Rapid non-destructive method to evaluate REBCO film composition

![](_page_27_Figure_4.jpeg)

BZO (101) streak deviation angle good indicator of BZO nanocolumn size and film composition

![](_page_27_Picture_6.jpeg)

UNIVERSITY of HOUSTON

![](_page_28_Picture_2.jpeg)

# Correlation between BZO (101) streak deviation angle and $I_c$ at 30 K, 3 T and 4.2 K, 13 T

![](_page_28_Figure_4.jpeg)

![](_page_28_Picture_5.jpeg)

In-line 2D-XRD in MOCVD manufacturing tool for real-time measurement of BZO streak deviation angle → to achieve consistent in-field performance

![](_page_28_Picture_7.jpeg)

UNIVERSITY of **HOUSTON** 

![](_page_29_Picture_2.jpeg)

# In-line 2D XRD built and installed in pilot MOCVD tool for film monitoring & control

![](_page_29_Picture_4.jpeg)

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_6.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_30_Picture_2.jpeg)

#### In-line XRD used to detect tape variations

![](_page_30_Figure_4.jpeg)

![](_page_30_Picture_5.jpeg)

F

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

## Round REBCO Wires with Excellent Flexibility and High Engineering Current Densities

![](_page_31_Picture_4.jpeg)

UNIVERSITY of HOUSTON

F

![](_page_32_Picture_2.jpeg)

# Bend strain-tolerant, round HTS wires needed for compact accelerator coils

![](_page_32_Figure_4.jpeg)

![](_page_33_Picture_1.jpeg)

### Standard REBCO tapes fail at bend diameter < 2 mm

![](_page_33_Figure_3.jpeg)

Standard REBCO tapes cannot be used to fabricate small diameter (< 2 mm) REBCO round wires needed for 15 mm bend radius requirement in CCT coils

![](_page_33_Picture_5.jpeg)

UNIVERSITY of HOUSTON

![](_page_34_Picture_2.jpeg)

# Symmetric Tape Round (STAR) REBCO Wire for high $J_e$ with diameter < 2 mm

#### Standard REBCO Tapes:

 REBCO asymmetrically positioned far away from neutral plane

#### Symmetric REBCO Tape:

- Copper stabilizer primarily on REBCO side.
- REBCO positioned near geometric center.
- Minimizes the strains in the REBCO layer.

![](_page_34_Figure_10.jpeg)

![](_page_34_Picture_11.jpeg)

![](_page_34_Picture_12.jpeg)

Symmetric REBCO tapes used to make round REBCO wires on 0.8 and 1 mm diameter copper former

![](_page_34_Picture_14.jpeg)

*IEEE Trans. Appl. Supercond.* 27, 6603204 (2017), *IEEE Trans. Appl. Supercond.* 27, 6602705 (2017), *Supercond. Sci. Technol.* 3, 04LT01 (2018)

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

## Symmetric REBCO tapes retain > 95% Ic even when bent to diameter of 0.8 mm

![](_page_35_Figure_4.jpeg)

![](_page_35_Picture_5.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

Caused by the progressive plastic deformation in the various layers.

![](_page_36_Figure_4.jpeg)

![](_page_36_Picture_5.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_37_Picture_2.jpeg)

# Optimized copper thickness for different substrate thickness for use in STAR wires

![](_page_37_Figure_4.jpeg)

T<sub>C</sub>SUH

![](_page_38_Picture_1.jpeg)

### STAR wires with $I_c > 600$ A at 77 K at 15 mm bend radius

![](_page_38_Figure_3.jpeg)

TrSUH

UNIVERSITY of **HOUSTON** 

![](_page_39_Picture_2.jpeg)

# STAR wires retain 90% of their $\rm I_{c}$ even at a bend radius of 15 mm

| STAR | l <sub>c</sub> (A) in | J <sub>e</sub> (A/mm²) in | l <sub>c</sub> (A) at | J <sub>e</sub> (A/mm²) at | Retention of I <sub>c</sub> |
|------|-----------------------|---------------------------|-----------------------|---------------------------|-----------------------------|
| #    | straight              | straight form             | 15 mm bend            | 15 mm bend                | (%) at 15 mm                |
|      | form                  |                           | radius                | radius                    | bend radius                 |
| 1    | 518                   | 215.8                     | 506                   | 210.8                     | 97.7                        |
| 2    | 482                   | 223                       | 450                   | 208.3                     | 93.4                        |
| 3    | 516                   | 227.5                     | 482                   | 212.5                     | 93.4                        |
| 4    | >600                  | NA                        | 611                   | 218.2                     | NA                          |
| 5    | >600                  | NA                        | 556                   | 196.5                     | NA                          |

![](_page_39_Figure_5.jpeg)

![](_page_39_Picture_6.jpeg)

=

#### UNIVERSITY of HOUSTON

![](_page_40_Picture_2.jpeg)

### $J_{\rm e}$ ~ 600 A/mm<sup>2</sup> at 20 T in recent STAR wires

1.67 mm diameter STAR wire bent to a radius of 15 mm

30 mm dia.

STAR wires tested at NHMFL

![](_page_40_Figure_6.jpeg)

At a bend radius of 15 mm, using REBCO tapes with 1.7μm thick films, 2018 STAR wire: 438 A/mm<sup>2</sup> at 20 T and 299 A/mm<sup>2</sup> at 31.2T **2019 STAR wire: 729 A/mm<sup>2</sup> at 15 T and 584 A/mm<sup>2</sup> at 20 T** 

![](_page_40_Picture_8.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_41_Picture_2.jpeg)

### 10m long, 1.9 mm dia. STAR wires produced

![](_page_41_Picture_4.jpeg)

![](_page_41_Picture_5.jpeg)

T<sub>C</sub>SUH

Average  $I_c$  = 476 A at 77 K, self-field over 10 meters

![](_page_42_Picture_1.jpeg)

#### UNIVERSITY of **HOUSTON**

# Ongoing Improvements: Higher Je with more tape layers on smaller dia (0.8 mm) former

6-layer STAR wire (1.0 mm former)

![](_page_42_Figure_5.jpeg)

8-layer STAR wire (1.0 mm former)

![](_page_42_Picture_7.jpeg)

![](_page_42_Figure_8.jpeg)

15-19% increase in J<sub>o</sub> at 77 K, self-field.

Advanced Manufacturing Institute

Supercond. Sci. Technol. 3, 04LT01 (2018), Supercond. Sci. Technol. 31, 12LT01 (2018)

![](_page_43_Picture_1.jpeg)

#### UNIVERSITY of **HOUSTON**

# <u>Ongoing Improvements</u>: Symmetric Tapes with even thinner (10 µm) substrates

#### 22 µm Hastelloy substrate

![](_page_43_Figure_5.jpeg)

#### 10 µm Hastelloy substrate

![](_page_43_Figure_7.jpeg)

![](_page_43_Figure_8.jpeg)

![](_page_43_Picture_9.jpeg)

#### UNIVERSITY of HOUSTON

![](_page_44_Picture_2.jpeg)

### **Status and Next Steps**

- Advanced MOCVD developed for REBCO tapes with 5 µm thick films and fine-scale BZO nanocolumns high performance over 4.2 K – 65 K
  - $I_c \sim 1440$  A/cm at 65 K, 1.5 T (**4.4X**  $I_c$  of commercial REBCO tape)
    - (Met Department of Energy Advanced Manufacturing Office Program goal)
  - $J_e \sim 5200 \text{ A/mm}^2$  at 4.2 K, 15 T (**5.4X** best  $J_e$  of Nb<sub>3</sub>Sn, **7X** commercial tape )
- In-line 2D XRD installed and used in pilot Advanced MOCVD system
  - BZO (101) streak angle predicts film composition and in-field performance
- Symmetric Tape Round (STAR) REBCO wire developed
  - J<sub>e</sub> = 584 A/mm<sup>2</sup> at 4.2 K, 20 T at 15 mm bend radius
  - 10 m long, 1.9 diameter STAR wire with I  $_{\rm c}$  ~ 476 A @ 77 K, self-field

#### <u>Next</u>:

- Scale up thick film, fine BZO tapes to 50 m lengths with high in-field  $I_c$ 
  - use 2D-XRD for in-line QC for uniform and consistent in-field  $I_c$
- Provide high-performance, lower-cost REBCO tapes for prototype demonstrations
- Scale up STAR wires to long lengths
- Increase  $J_e$  of STAR wires > 1000 A/mm<sup>2</sup> at 4.2K, 20 T