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Power dissipated by trapped vortices under a strong RF field
and Campbell penetration depth in superconducting resonant
cavities
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This article is concerned with the mechanisms by which type II super-
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Superconducting linac applications
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Niobium Cavity
Superconducting RF cavities resonating at 0.1-2 GHz RF Antenna He Pumping Port

Electric Fields

Currently made of pure niobium Liquid He Bath|
Beam Path

Cooled by superfluid helium at 2K

--)

Tens of thousands of these in miles long tunnels o Fil Port
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Definitions

A — superconducting gap

¢ — coherence length

A — magnetic penetration depth
pn - Normal state resistivity

R - surface resistance

Q — quality factor

w = 2nf — RF circular frequency

no = ¢3/2né?p,, - Bardeen-Stephen
vortex drag coefficient

¢, - magnetic flux quantum

£ - spacing between a pinning center
and the surface

vy - Larkin-Ovchinnikov (LO) critical
velocity of a vortex

k — thermal conductivity

d — thickness of a cavity wall

ak - Kapitza thermal conductance
between a cavity wall and liquid He

€ = g5 /4muyA? - vortex line tension
g =In(2/§) +1/2

T, - critical temperature

B, - lower critical field

B, - thermodynamic critical field

B; - superheating field

B, - upper critical field
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Quality factor

2
Q= W o fv [H(r)[*dV G Mean EM energy
N R,/H(r)|2dA  (R,)’
55‘4 S’ ( )‘ < 8> Mean dissipated
power
G = aG, Go = pge = 37752 Vacuum
impedance
Surface resistance of go/od normal metals Clean Cu with
_ 1/2 =109 Qm at f = 0.5-2 GHz
Ry = (m O a
s = (Thofpn) has R, = 0.5-1 mQ
Q ~ 10° — 10°
Exponentially-small BCS surface resistance of superconductors:
2,,2\3
HEW=A 9kT A
g In [ — —— | ~22—-10n2, @1.7—2K,1—-2GH
R o KT n(Qhw exp T On 7 GH=z

Q ~ 1010 — 1012
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How good can Nb cavities be?

Continuous progress in

"
B T T

® ILC processing ] improving Q(H) and E,.
®  Modified 120C baking (N2 included) in Nb cavities.
-l.-.
:/""\::"--..._, - ? Understanding the
oo T ———> fundamental limits of
5100l \ 1 Q(H) and the SRF
[ : accelerating gradients
S e, TIT The RF field of H =200 mT
S aemm induces current densities
Eacc at the surface close to the
LT BCS pairbeaking limit.
0 5 10 15 20 25 30 35 40 45 50

E_ (MV/m)

acc

A. Grassellino and S. Aderhold, TTC meeting, Saclay, France (2016)

High Q can only be achieved in the Meissner state with a small density of trapped vortices.
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Why are trapped vortices so bad for SRF cavities?

Cooldown

in field from

T> T, to 2K

)

Vortices get trapped by materials defects on cooling
the cavity through T. at which H.(T) vanishes.

Trapped vortices caused by Earth’s magnetic field can
produce ~ 10? higher RF losses than the BCS

surface resistance at 2K and 1-2 GHz.
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London penetration depth of
~ 40 nm << d =3mm

Even good screening (1% of Hg) cannot eliminate trapped vortices. Temperature maps
have revealed sparse hotspots of vortex bundles which reduce the quality factors

and breakdown fields: vogt, Kugeler and Knobloch, PRAB 18, 042001 (2015);

Gonnella, Kaufman and Liepe, JAP 119, 073904 (2016); Dhakal et al, PRAB 23, 023102 (2020).
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Detection and manipulation of trapped vortices

In films vortices are observed using scanning SQUID, kirtley, Rep. Prog. Phys. 73, 126501 (2010)
MO imaging, STM, MF, Lorentz microscopy, ...

hotspots

Arrays of carbon sensors to get local temperature
maps with the sensitivity of a few mK and spatial
resolution of a few mm (Cornell, Jlab, FNAL)

Flushing vortices out by strong thermal gradients or scanning laser beams: ciovati and Gurevich, PRAB
11, 122001 (2008); Gurevich and Ciovati. PRB 87, 054502; (2013); Romanenko et al, JAP 115, 184903 (2014); Posen et al, JAP 119, 213903 (2016).
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Key issues

Trapped vortices can produce significant losses which can be much higher than the BCS
losses in SRF resonator cavities.

Vortex losses are determined by an effective Campbell penetration depth

New physics of superfast vortices driven by strong Meissner screening currents at the
depairing limit in SRF cavities.

How fast can vortices move? How long does it take for a vortex to penetrate a
superconductor?

Nonlinear dynamics of supersonic vortices: field-dependent RF losses, Larkin-
Ovchinnikov instability, decrease of the surface resistance with the RF amplitude, ...

How much vortex dissipation can be tolerated? Can vortex dissipation be mitigated by
strong pinning?
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Trapped vortex driven by RF Meissner current

An elastic vortex is driven by the Lorentz force f ;| = qﬁOJ X Z perpendicularto J:
J(z,t) = (Ha/N) e */* sinwt

The surface Lorentz force is balanced by
viscous drag force and bending stress

At H, = 100-200 mT, J(0) approaches
the depairing limit

Jd Mt HC/)\

Typical depinning J. = 10-100 kA/cm2in Nb
are some 4 orders of magnitude lower
than

Ja =HJ/A, =500 MA/cm?

Pinning is too weak to stop the vortex tip
at the surface above H > 0.01H. =2 mT
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RF Campbell length

= Campbell length L, can be much

greater than A.

L., can be either larger or smaller than
the pin distance from the surface.
If £ > L, the effect of pinning is weak

Dynamic eq for displacements u(x,t) of a
vortex driven by a weak RF field H, << H.

nu = eu’ — (Hy/N)e */* sinwt

Elastic RF ripple length — Campbell
penetration depth:

.- £ _ 8 [9Pn
N nw  2A\ muof

Clean Nb

A==€ po=1n0m, f=2GH=z
L, = 180 nm

Nb,Sn

MME® 20, pu=0240m; J[=2GHz

L, ~ 126 nm
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Low-field RF power of an oscillating vortex

Gurevich and Ciovati. PRB 87, 054502; (2013)

= Low frequencies. The whole

vortex segment 5wings:L“ - 1 . p—
A B2 63 w? 0.6l |
- 3pn&? |
%06} ,
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§ ¥ —
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Q- o4 !
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P~ W;LEE"QBg)\{f\prn 0 1 2 3
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Hotspots revealed by thermal maps require

Nodependants on'the pinspacing regions ~ few mm with ~ 10° vortices
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Extreme dynamics of vortex tips at the surface

At H = H,, the superflow velocity of Cooper pairs reaches
the critical pairbreaking value v. = A/pk .

How fast can the vortex tip move
at the pairbreaking limit?

Jago  pné
o 2p0A°

Y

This rough estimate yields v =10 km/s,
which exceeds both the speed of sound
(2-4 km/s) and v, = A/pg =1 km/s

How can a supersonic vortex tip remain connected to
a subsonic elastic vortex line in the bulk?

SRF cavities are a unique testbed to study the extreme dynamics of a vortex driven by non-
dissipative Meissner currents at the pairbreaking limit
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How can a vortex move faster than the current superflow

which propels it?

o Vortex core stretches along the
direction of motion

o Vortex can move much faster than the
drift velocity of supercurrent

o V can exceed the pairbreaking velocity

A sailboat can move much faster
than the wind if drag is weak and
the sail is nearly perpendicular
to the wind blow.
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What does experiment say?

a4 R
Mature Comm. 8, 85 (2017)
ARTHOLE
Imaging of super-fast dynamics and flow
instabilities of superconducting vortices

75 nm thick Pb film: imaging of penetrating vortices with a
nanoscale SQUID on tip

Velocities can reach 10—20 km/s as J(x,y) at the
edge reaches J4 (H = H, for the SRF cavities)

If v =10 km/s, a vortex penetrates by the distance

L~v/f~10um >, Q1GH:z

Vortices penetrate almost instantaneously through the
Meissner RF layer

vix) kmfs)

Hot vortex branching trees. No materials defects can stop
such superfast vortices.
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Dynamics of
vortex branching
observed by SOT

microscope

Pb bridge at B, =27 G
SOT diameter: 225 nm
Scan area: 12 x 12 um?

Pixel size: 40nm
Scan time: 4 min/frame

T=4.2K

0:40

L. Embon et al, Nature Comm. 8, 85 (2017)
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What happens to the vortex core at high velocities?

Fast
vortex v

Slow

vortex .
\')
» —

A(r)A,
]

0 X

o The core stretches along v as the recovery length of

&(55:« t) behind the core increases with v:
o A nearly round vortex

o

: LA~
core of radius ~ & A=UTA, U > &/Ta

o A cloud of diffusive nonequilibrium quasiparticles is

o Cloud of dissipative Iagging behind the core .
quasiparticles is locked

onto the moving core o Vortex drag decreases with v: ~ 27ppéLa



IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2021.
Invited presentation Wk1MOr5A-02 was given at the virtual ASC 2020, October 30, 2020.

Velocity dependence of 7/(V)

Larkin-Ovchinnikov mechanism

Reduction of the vortex drag due to diffusive

depletion of quasiparticles in the moving core

Mo
1+ (v/vo)?

nv) =~

LO critical velocity:

1/2 1/4
vo ~ (Df7)?(1 — T/T.)"
D is the electron diffusivity

The energy relaxation time 72(1')
caused by inelastic e-p scattering
increases as T decreases so vy(T)
is expected to decrease at T<< T,

Larkin and Chechinnikow, JETP 41, 960 {1975)

Electron overheating

The drag coefficient depends on the
electron temperature T, of the vortex

':.'f"U B.ﬂ.! [[}} 1 E'
Pn f 5

2D power balance:

(To) =

n(Ty)v? = (T, — To)x

An effective thermal conductivity #(75)
contains both quasiparticle and

\E::hnnnn contributions

Solving for T, yields 7(«) in the
LO form with

vy = \/T.:;H(Tu}f"?um]

Bezugiyj and Shklovskii, Physica C 202, 234 [15952)

Kunchur, PRL 89, 137005 (2002}
Gurevich and Ciovati, PRB 77, 104501 {2008]
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Larkin-Ovchinnikov instability

Balance of drag and Lorentz forces e
for a straight vortex in a thin film: 2 D—. 'J:’ ':i[n _________
Nov J=J .
= i 08f-cccccccsmtage-mmmemmmmmmaeaa]
D ¢’0 m
1+ (v/vo)
<° 04}
o
. ; . B R R i e R e s
Observations on different materials: «° o3} 1 Jad )
Musienko et al, JETP Lett. 31, 567 (1980); Klein et al., JLTP 61, 413 (1985); m
Amenio et al, PRB 76, 054502 (2007); Grimaldi et al, J Phys C97, 012111 (2008);
Villard et al, JLTP 131, 957 (2003); Doettinger et al, PRL 76, 1691 (1994) ; 02
Samoilov et al, PRL 75, 4118 (1995); Bezuglyj et al PRBE 99, 174518 (2019)
0.1 —
160 T = 78K Jm = Moo /2¢){]
150mT 0 . .
120F | 10 400  into the normal state 0 v L }'5 g 3
f 1480 viv
E | j [ | 70 $ .
< 80| ! [ 10 ;
A / / L b Acceleration of a runaway vortex
P 7 / - at v > vy, jumps on the V-l curves
! __..r“:_:,,_.JI 10 syt h b d g s O 1 1k
dc transport A== i The observed vy(T) is =~ 0. m/s
on Nb films: ok Fasd asd  cif near T. and decreases as T decreases.
Peroz and Villard, J {Ncmz)

PRB 72, 014515 (2005)

Can be masked by heating effects
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LO instability of a trapped vortex

Since the LO critical velocity vo ~ 0.1 — 1 km/s is 1-2 orders of magnitude smaller than
velocities of a vortex at H = 10 -100 mT, the LO instability can be essential in SRF cavities.

HO.
. .-.» unstable
¢ e

What happens to the vortex if its
fast tip is LO-unstable while the rest
of the vortex is LO-stable?

Can a vortex be shredded into
disconnected pieces by strong
surface current?

Dependence of RF losses and the
residual surface resistance caused by
trapped vortices on the RF field.

The extreme vortex dynamics in SRF
cavities is not masked by strong
overheating typical of dc transport
measurements at T<< T, .
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Nonlinear dynamic equations for a vortex

viio. -0

Balance of local forces perpendicular to a curvilinear vortex

Mo+ n(v)v = €/R — (Hy/N)e™*/* sinwt

Dynamic eq. for a dimensionless vertical displacement
; —  u(z,t) =y(z,t)/A T>x/A:

0 ( U ) ~yuv'1 + u'? u’

— 7 S aIn(2 i
AT 1+u2 +ay2u® (1 + u?)3/2 Be~ " sin(2mt)

. . v = f/ fo, fo = Heipn/HaX po
Takes into account vortex inertia,

and nonlinearities of the LO vortex 9
drag and bending rigidity a = (Afo/vo)”, B=H,/Ha

fo = 22 GHz for Nb.

Pathirana and Gurevich, PRB 101, 064504 (2020)
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Nonlinear vortex losses and residual resistance

Dissipated power per vortex:

p= [ s

Surface resistance R; for the mean trapped flux density By is obtained from

pBo/¢o = R;H?2 /2

2 1 l PN -2
1 20, B
Ri(ﬁ)=R°7/0dto(+u) u dz R, = 2pnBo

G2 1+ u?+ ay?u2’ ~ AB_s

For Nb at 1-2 GHz, we have ¥ ~ 10 !,and a ~ 10% — 10? At small f and H,

the LO term in the denominator is negligible and R; is independent of Ha

As H, and f increase, qlzcancels out and R; becomes nearly independent
of frequency and decreases with the RF field: .
ity o B
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LO mechanism of the low-field Q(H) rise

Ri(H, f)/Ri(0, f)

1.5

0.5

T 00

—

0 01 02 03 04 05 06
H/H,

The surface resistance Ri(H) starts
decreasing with the field amplitude

as the frequency increases.
Calculated for different values of

v=f/fo@l=4) a=3-10°

R.(n})

40 ; -
¢ T=1.37K
e T=2K
30
20 |
10
0 L L L L
0 5 10 15 20

B(m'T)

Fit to the experimental data of

for a 1.47 GHz Nb cavity
Ciovati, JAP 96, 1591 (2004)

| = 3\, Bo=0.73uT,
vo(2K) = 30m/s,
vo(1.37K) = 35m/s,

25
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Effect of frequency on the field dependence of R;(H.)

2
(b) (8 _> a"}/
= 0.1 |

u(0,t)

0 0.1 0.2 0.3 0.4 0.5 0.6

Transition from quasi-harmonic to
relaxation

oscillations at the peak in Ri(H). The
Campbell
length increases with H.:

Ly,(Ha) = ve/wn(v)

: o L,(H,,w) <1l Dbeforethe peak
0 0.05 0.1 0.15 0.2 o Lu(Ha,w) > 1  after the peak
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Tuning the LO vortex dynamics by impurities

~o = 0.004 (a)

—o— /. =1

i >0
L o 1/£,=0.1

0 0.1 02 03 04 05 06
3

Calculated for o = 1.6 - 10%,

0.035
0.03}
0.025 |

— 0.02

]

~ 0.015
0.01

0.005 |

[ = s

o Making the surface dirtier and decreasing the impurity mean free path
shifts the anomalous drop of the vortex surface resistance with H,

to lower fields.

o May pertain to the low-field Q(H) drop observed on many Nb cavities
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Effect of weak overheating on the surface resistance

Thermal feedback for trapped vortices and BCS:

7 L 0 iy 0 H?
(Ri(Ha) + Roel"=™A/T8) Za — (T —Ty)g,

vortices BCS

. . =l —1
Thermal resistance of the cavitywall: § =~ = O + d / W™

1.3

a, =10c12=1()00r3 : y z

o Interplay of the descending Ri(H) and
ascending Ry(H,) due to overheating
produces a minimum in Rg(H,)

o At large LO critical velocity vy(T), BCS
overheating reverses the decrease
of R,(H,) with H,

_ _ _ . . o Too many trapped vortices cause strong
0 0.2 0-4H - 0.6 0.8 1 overheating which can eliminate the
a’ b0 minimum in R,(H) as vy(T) increases with T

1 R(0) = 0.3R,
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Could strong pinning be effective in SRF cavities?

P Equilibrium. Fluxoid!
~FLTE GOOD

o Artificial pinning centers (APCs) which take 10%
of current-carrying cross-section can produce
critical current densities J, ~ 0.1.J,

: o For cavities this can only be effective below
) the depinning field H < 0.1H, = 20 mT= 10%
of the SRF breakdown field for Nb.

o Reduction of vortex losses only in a small
low-H part of the field operation range

o-Ti ribbons in a Nb-Ti alloy (D. Larbalestier & P. Lee)

BAD

o 10% of metallic APCs produce huge ohmic losses above the proximity effect
breakdown field. Incompatible with high Q controlled by the BCS surface resistance

o 10% of dielectric APCs block the current-carrying cross section, greatly increasing
the field penetration depth and the BCS surface resistance

o Above the depinning field, high Bean’s hysteretic losses make high-J. SRF cavities no
better than the normal Cu cavities
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Conclusions

At RF fields of 100-200 mT tips of vortices trapped in Nb cavities can reach velocities
of a few km/s approaching the speed of sound (3.5 km/s)

Extreme nonlinear dynamics of the elastic vortex, drastic change of a hot moving
vortex core, strong pairbeaking effects and nonequilibrium kinetics of quasiparticles.

Decrease of the residual surface resistance due to the Larkin-Ovchinnikov mechanism
and electron overheating in the vortex core.

The descending field dependence of the surface Ri(H) develops as the frequency increases.
A new mechanism of the Q(H) rise which can be tuned by impurities.

Pinning at the surface can only reduce vortex dissipation at low RF fields << H..

High-Q SRF cavities offer a unique opportunity to investigate the extreme dynamics of
vortices at low temperatures.
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