A 4－bit RISC－Dataflow AQFP MANA Microprocessor：Architecture，Design Challenges，and Demonstration

Christopher L．Ayala＊

Ro Saito，Tomoyuki Tanaka，Tomohiro Tamura，Naoki Takeuchi，and Nobuyuki Yoshikawa

Yokohama National University，Yokohama，Kanagawa，Japan
＊email：ayala－christopher－pz＠ynu．ac．jp • chris．ayala＠ieee．org

[^0]Institute of Advanced Sciences

Outline

\square Motivation and background
\square MANA processor
\square Design goals

- Microarchitecture and ISA
\square Tested breakout chips
\square MANA prototype chip
\square Outlook
\square Summary

Motivation

3

Trend of rising electricity demand of information and communications technology (ICT).

Approaching 10\% of the total electric power worldwide in 2020.

Facebook Data Center, Lulea, Sweden

Performance: 27-51 PFLOP/s
 Power 84 MW avg* (120 MW max)

D.S. Holmes, ISS 2013, Tokyo, Japan.
http://worldstopdatacenters.com/renewable-energy-output-rankings/

N. Jones, Nature, vol. 561, no. 7722, pp. 163-166, Sep. 2018.

Worst-case scenario: ICT could use as much as 50\% of global electricity by 2030.

A. S. G. Andrae and T. Edler, Challenges, vol. 6, no. 1, pp. 117-157, Jun. 2015.

AQFP logic for computing

Adiabatic quantum-flux-parametron (AQFP) logic

- Extremely small bit energy << $I_{c} \Phi_{0}$
- Very small switching energy due to adiabatic operation
- 1.4 zJ at 4.2 K in experiment [2]
- High gain
- 10-50x gain from μA 's of input current
- High robustness
- Clock speeds on par with state-of-theart CMOS logic ($5-10 \mathrm{GHz}$)

[1] N. Takeuchi et al., Supercond. Sci. Technol. 26, 035010 (2013).
[2] N. Takeuchi et al., Appl. Phys. Lett., vol. 114, no. 4, p. 042602, Jan. 2019.
After cooling overhead [2], ~80x more efficient than 7 nm FinFET with $V_{D D}=0.8 \mathrm{~V}$ [3]
[2] D.S. Holmes et al., IEEE TAS, 23, no.3, (2013)
[3] A. Stillmaker et al., Integration. 58, pp. 74-81 (2017)

Adiabatic quantum-flux-parametron (AQFP)

AQFP (buffer) schematic

$+l_{\text {in }} \rightarrow$ SFQ stored in left loop, logic ' 1 '.
$-\mathrm{I}_{\mathrm{in}} \rightarrow \mathrm{SFQ}$ stored in right loop, logic ' 0 '.

Potential energy of the AQFP

Potential energy changes adiabatically during a switching event.

Operation is based on conventional QFP gates [1].
Switching energy can be reduced below $I_{c} \Phi_{0}$
by using AC excitation currents, I_{x}.
[1] M. Hosoya et al., IEEE Trans. Appl. Supercond. 1, 77-89 (1991).

Adiabatic quantum-flux-parametron (AQFP)

AQFP (buffer) schematic

$+\left.\right|_{\text {in }} \rightarrow$ SFQ stored in left loop, logic ' 1 '.
$-\mathrm{l}_{\mathrm{in}} \rightarrow \mathrm{SFQ}$ stored in right loop, logic ' 0 '.

Potential energy of the AQFP

Potential energy changes adiabatically during a switching event.

Operation is based on conventional QFP gates [1].
Switching energy can be reduced below $I_{c} \Phi_{0}$
by using AC excitation currents, I_{x}.
[1] M. Hosoya et al., IEEE Trans. Appl. Supercond. 1, 77-89 (1991).

Adiabatic quantum-flux-parametron (AQFP)

AQFP (buffer) schematic

$+t_{\text {in }} \rightarrow$ SFQ stored in left loop, logic ' 1 '.
$-\mathrm{l}_{\mathrm{in}} \rightarrow \mathrm{SFQ}$ stored in right loop, logic ' 0 '.

Potential energy of the AQFP

Potential energy changes adiabatically during a switching event.

Operation is based on conventional QFP gates [1].
Switching energy can be reduced below $I_{c} \Phi_{0}$
by using AC excitation currents, I_{x}.
[1] M. Hosoya et al., IEEE Trans. Appl. Supercond. 1, 77-89 (1991).

Data propagation in AQFP logic

8

http://wwwo.sun.ac.zalix/?q=tools jsim

Cell library: minimalist design

Majority

$$
\begin{aligned}
x= & \operatorname{MAJ}(a, b, c) \\
& =a \cdot b+b \cdot c+c \cdot a
\end{aligned}
$$

NAND

$$
\begin{aligned}
x & =\operatorname{MAJ}(\bar{a}, 1, \bar{b}) \\
& =\bar{a}+\bar{b} \\
& =\overline{a b}
\end{aligned}
$$

Splitter

$$
x=y=z=a
$$

Any combinational logic gates can be designed by arraying the four building blocks.

N. Takeuchi et al., J. Appl. Phys., vol. 117, no. 17, p. 173912, May 2015.

Cell library: minimalist design

10

$$
\begin{aligned}
& \mathrm{L}_{\text {in }}=1.13 \mathrm{pH} \\
& \mathrm{~L}_{\mathrm{x}}=5.67 \mathrm{pH} \\
& \mathrm{~L}_{\mathrm{d}}=6.16 \mathrm{pH} \\
& \mathrm{~L}_{1}, \mathrm{~L}_{2}=1.53 \mathrm{pH} \\
& \mathrm{~L}_{\mathrm{q}}=7.88 \mathrm{pH} \\
& \mathrm{~L}_{\text {out }}=31.9 \mathrm{pH} \\
& \mathrm{~K}_{\mathrm{d} 11}, \mathrm{~K}_{\mathrm{dd}}=-0.154 \\
& \mathrm{~K}_{\mathrm{k} 1}, \mathrm{~K}_{2 \mathrm{x}}=-0.209 \\
& \mathrm{kout}_{2}=-0.515 \\
& \mathrm{~J}_{1}, \mathrm{~J}_{2}=50 \mu \mathrm{~A}
\end{aligned}
$$

Excitation/clock lines are 50Ω microstriplines

Interconnect are shielded

 striplines

Corner piece Intersection piece

4-layer Nb/AIO $/ \mathrm{Nb} 10 \mathrm{kA} / \mathrm{cm}^{2}$ high-speed standard process (HSTP) by AIST, Tsukuba, Japan
N. Takeuchi et al., Supercond. Sci. Technol., vol. 30, no. 3, p. 035002, Mar. 2017.
C. L. Ayala et al., Supercond. Sci. Technol., vol. 33, no. 5, p. 054006, Mar. 2020.

Overall AQFP design flow

11

C. L. Ayala et al., Supercond. Sci. Technol., vol. 33, no. 5, p. 054006, Mar. 2020.

Perspective from ASC 2016

8-bit 5 GHz
Microprocessor
General purpose

Branching, logic,
add/sub/shift
~ 10 instructions

Advanced
version:
VLIW, SIMD

MANA microarchitecture

MANA - Monolithic Adiabatic integration Architecture

- Goal: Demonstrate AQFP can do both logic and memory
- RISC-like datapath + dataflow-like control
- In-order, single-issue
- 4-bit data word size
- 16-bit instr. word
- Program branching
- $21,460 \mathrm{JJs}$ in $1 \times 1 \mathrm{~cm}^{2}$ chip
- $15 \mathrm{fJ} / \mathrm{op}$ at RT @ 5 GHz
- 4-phase 5 GHz clock
- Latency: 108 clock phases or 27 cycles ($5.4 \mathrm{~ns} @ 5 \mathrm{GHz}$)

Ctrl buffer, routing, write-back (WB) 5,484 JJs
17 cycles (68 phases) overlapped 2 cycles (8 phases) write-back

MANA instruction set architecture

Instruction Word													Description	
15	14 13	12	11	10	9	8	7	6	5	312	1	0	S=Stall bit, NPC= OPCODE=operation code,	
S	NPC	OPCODE					RA			RB			$\mathrm{RA}=$ address for operand $\mathrm{A}, \mathrm{RB}=$ address for operand B	
0	0	0	0	0	0	0	0	0	0	0	0	0	NOP, no operation, used for stalling	
0	0	1	1	1	1	1	0	0	0	0	0	0	HALT, end program	
1	0	0	0	0	0	1			JMP	ADDR			JMP, absolute jump to [JMP ADDR]	
1	IBI NPC	0	0	0	1	0			JMP	ADDR			BNEG, branch to [JMP ADDR] if NEG flag is set	
1	IBI NPC	1	0	0	1	0			JMP	ADDR			BNNEG, branch to [JMP ADDR] if NEG flag is NOT set	
1	IBI NPC	0	0	0	1	1			JMP	ADDR			$B E Q$, branch to [JMP ADDR] if EQ flag is set	
1	IBI NPC	1	0	0	1	1			JMP	ADDR			BNEQ, branch to [JMP ADDR] if EQ flag is NOT set	
S	IBI NPC	0	0	1	0	0		IMM			RB		ANDI, bitwise AND with immediate: R [RB]=R[RB]\&\&IMM	
S	IBI NPC	0	0	1	0	1		IMM			RB		LI, load immediate: R[RB]=[IMM]	
S	IBI NPC	0	0	1	1	0	0	0	AMT		RB		SRL, shift right logical: $\mathrm{R}[\mathrm{RB}]=\mathrm{R}$ [RB] \gg [AMT]	
S	IBI NPC	0	0	1	1	0	0	1	AMT		RB		SRA, shift right arithmetic: $\mathrm{R}[\mathrm{RB}]=\mathrm{R}[\mathrm{RB}] \ggg$ [AMT]	
S	IBI NPC	0	0	1	1	1	0	0	AMT		RB		SLL, shift left logic: R [RB] $=R$ [RB] \ll [AMT]	
S	IBI NPC	0	0	1	1	1	0	1	AMT		RB		SLA, shift left arithmetic (same as SLL) : R[RB]=R[RB]<<<[AMT]	
S	IBI NPC	0	1	0	0	0		RA			RB		ADD, addition: $\mathrm{R}[\mathrm{RB}]=\mathrm{R}[\mathrm{RA}]+\mathrm{R}[\mathrm{RB}]$	
S	IBI NPC	1	1	0	0	0		RA			RB		ADDNW, add with no write: $\mathrm{R}[0]=\mathrm{R}[\mathrm{RA}]+\mathrm{R}[\mathrm{RB}]$	
S	IBI NPC	0	1	0	0	1		RA			RB		SUB, subtract: $\mathrm{R}[\mathrm{RB}]=\mathrm{R}[\mathrm{RA}]+(\sim R[R B]+1)$	
S	IBI NPC	1	1	0	0	1		RA			RB		SUBNW, subtract with no write: R[0]=R[RA]+(~R[RB]+1)	
S	IBI NPC	0	1	0	1	0		RA			RB		XOR, bitwise XOR R: $[R B]=R[R A] \oplus R[R B]$	
S	IBI NPC	0	1	0	1	1		RA			RB		XNOR, bitwise XNOR: $\mathrm{R}[\mathrm{RB}]=\sim(\mathrm{R}[\mathrm{RA}] \oplus \mathrm{R}[\mathrm{RB}])$	
S	IBI NPC	0	1	1	0	0		RA			RB		AND, bitwise AND: R[RB]=R[RA]\&\&R[RB]	
S	IBI NPC	1	1	1	0	0		RA			RB		ANDNB, bitwise AND not B: R[RB]=R[RA]\&\& R [RB]	
S	IBI NPC	0	1	1	0	1		RA			RB		OR, bitwise OR: $\mathrm{R}[\mathrm{RB}]=\mathrm{R}[\mathrm{RA}]\| \| R[R B]$	
S	IBI NPC	1	1	1	0	1		RA			RB		ORNB, bitwise OR not B : R [RB] $=$ R[RA]\|	$\sim_{\text {[}}$ [RB]
S	IBI NPC	0	1	1	1	0				DR			LFM, load from memory: R[14, R15]=MEM[MADDR [[Hi, Lo]	
S	IBI NPC	0	1	1	1	1				DR			WTM, write to memory: MEM[MADDR] $=R[\mathrm{R} 14]: \mathrm{R}$ [R15]	

Architecturally 2-stage pipeline

- Stage 1: determine stall based on prefetched stall bits (1 cycle latency)
- Stage 2: fetch instruction from IB, decode, execute, write back (107 cycles total)
- Allows peak IPC of 1

	Instruction	S			Opcode					RA				RB			
Instr. 1	add \$4, \$3		0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
Instr. 2	add $\$ 3, \$ 6$	0		0	0	1	0	0	0	0	0	1	1	0	1	1	0
Instr. 3	xor \$5, \$7	0		1	0	1	0	1	0	0	1	0	1	0	1	1	1

Instr. 2 depends on Instr. 1's $\$ 3$. Compiler sets S -field of Instr. 1 to ' 1 ' thus Instr. 2 must wait.

S-field - stall-bit: compile-time hazard detection + hardware stall

- Stall-bit tells next instruction to wait
- Propagates with its instruction
- Returns with processed data as ACK signal to notify next instruction can be issued

Breakout: MANA instruction decoder-controller

- Input:
- 12-bit instruction word
- Processor flags (ZERO, NEG)
- Debug input
- Generates 46 control signals + debug
- Logic synthesis and GA-based place-and-route
- Updates for MANA integration
- 16-bit instruction word
- Addition of CARRY flag
- NPC (next PC) changed to request next block of 4 instructions
- Was used to avoid long PC calculation every cycle
- Now IB is stall logic controlled parallel shift register
- All jumps/branches will force a stall
- $2.0 \mathrm{~mm} \times 2.6 \mathrm{~mm}$
- 2664 JJs
- Latency:
- 7 cycles for datapath signals (1400 ps @ 5 GHz)
- 1 cycle for stall logic (200 ps @ 5 GHz)
C. L. Ayala et al., ISEC (2019), Riverside, CA, USA.

Breakout: MANA register file (16 x 4-bit)

16
1-to-4 power divider

Breakout: MANA register file (16 x 4-bit)

17

Updates for MANA integration
\square R0 remains zero-constant
\square R1 \rightarrow normal register, no longer ones-constant

- R14, R15 modified to interface with serial I/O

MAJ DFF-based registers with additional circuitry for serial I/O (R14, R15)

Breakout: MANA EX high-speed chip

[1] C. L. Ayala et al., IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1-7, Jun. 2017. [2] C. L. Ayala et al., ISS 2017, Tokyo, Japan.
[3] N. Takeuchi et al., Appl. Phys. Lett., vol. 110, no. 20, p. 202601, May 2017.

- MANA EX high-speed chip
- $\mathrm{Nb} / \mathrm{AlO}_{x} / \mathrm{Nb} 10 \mathrm{kA} / \mathrm{cm}^{2}$ technology
- ALU-shifter datapath + control signal buffering
- ALU: MAJ-based Kogge-Stone adder [1] with in-place logic operators
- Shifter: Synthesized logic-arithmetic data shifter [2]
- $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ chip
- $2.1 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ core
- 2076 JJs
- Latency: 9 cycles (1800 ps @ 5 GHz)

High-speed considerations

- Roundtrip of meandering clock $<5 \mathrm{~mm}$
- High-speed voltage drivers [3]
- High-speed He-immersion chip probe
- AC clock sources
- BERT: Single bit data generator, single bit output checker

Breakout: MANA EX high-speed chip

Output interface uses unipolar return-to-zero encoding.

Functionally exhaustive low-speed test (100 kHz)
\square Tested logical operators, addition/subtraction (random and carry propagate), and shifter operations.
\square All tests passed.

Breakout: MANA EX high-speed chip

(a) Full-waveform

Critical carry-propagate high-speed test pattern $(1111+0001)$
(b) Zoom-in on outlined areas

High-speed 2.5 GHz (T=400 ps) test

- Expected outputs: COUT $\leftarrow \mathrm{B}[0]$; RES[3:0] $\leftarrow!\mathrm{B}[0]$
- $1 \mathrm{GHz} \sim 2.5 \mathrm{GHz}$ operated successfully 3 GHz operation unstable
- Fall-time of output too slow, may need to improve output interface or experimental setup

MANA prototype chip

CRNVITY

- MANA prototype chip
- $\mathrm{Nb} / \mathrm{AlO}_{x} / \mathrm{Nb} 10 \mathrm{kA} / \mathrm{cm}^{2}$ technology
- All stages integrated together by hand
- $1 \mathrm{~cm} \times 1 \mathrm{~cm}$
- Unoptimized clock network
- Wire-bonded
- $21,460 \mathrm{JJs}$
- Latency: 27 cycles ($5.4 \mathrm{~ns} @ 5 \mathrm{GHz}$)
\square Experiment
- Low-speed testing
- 4×16-bit instruction blocks manually loaded to IB of IDI serially
- 4-bit debug output tapped from WB data

MANA prototype chip

22

Smoke test: set and read registers

(1) Clear all registers via \$0
(2) Set registers $\$ 1=0 \times 1, \$ 2=0 \times 2$, \$3=0×3...
(3) Read registers from $\$ 15$ down to \$0

serial loading of $4 \times 16 \mathrm{~b}$
instructions

Smoke test passes at 100 kHz .

MANA prototype chip

23

Test program 1: add/sub + branch

(a) Full-waveform [0.5 ms to 3.4 ms]

(b) Zoom-in of first and last result

(c) Test program 01

//Zero all reg with \$0	
//Main program loop	
00: add \$3, \$2	//add 2 to \$3
01: subnw \$9, \$3	//compare to 9 in \$9
10: bneq 0×00	//if !zero, go to 0x00
11: add \$3, \$6	//add 6
//Check program	
00: add \$3, \$0	//Check \$3, expect 15

(d) Output sequence

27-cycle stall due to data/ctrl hazards

Test program 1 successfully passes.

MANA prototype chip

24

Test program 2: shift/sub + branch

(a) Full-waveform [0.5 ms to 3.4 ms]

(b) Zoom-in of first and last result

(c) Test program 02

//Zero all reg with \$0	
//Main program loop 00 //arith. sh by 1 on $\$ 8$	
01: subnw \$15, \$8	//compare to 15 in \$15
10: bneq 0x00	//if !zero, go to 0x00
11: sll 03, \$8	//sll by 3 on \$8
//Check program 00: or $\$ 8, \$ 0$,

(d) Output sequence

RES1: 0 b 1100	$/ / 1 \mathrm{st}$	sra: $\$ 8=1000->1100$
RES2: 0b00111	$/ / 1 \mathrm{st}$ cmp: $\$ 15-\$ 8=3$	
RES3: 0b1110	$/ / 2$ nd sra: $\$ 8=1100->1110$	
RES4: 0b0001	$/ / 2$ nd cmp: $\$ 15-\$ 8=11$	
RES5: 0b1111	$/ / 3$ rd sra: $\$ 8=1110->1111$	
RES6: 0b0000	$/ / 3 \mathrm{rd}$ cmp: $\$ 15-\$ 8=0$	
RES7: 0b1000	$/ / \mathrm{sl1}: \$ 8=1111->1000$	
RES8: 0b1000	$/ /$ Check: $\$ 8=\$ 8 \mid \$ 0=8$	

Test program 2 successfully passes.
RF RW, ALU execution, branching, and hardware stalling successfully demonstrated.

MANA prototype chip

Excitation margins of chips

Statistics of measured chips

Wafer	Chip 1	Chip 2	Chip 3	$\boldsymbol{I}_{c}{ }^{\text {a }}$	Working
MANA-W1	100 kHz	X	100 kHz	110.3%	$5 / 6 \mathrm{chips}$
MANA-W2	100 kHz	100 kHz	100 kHz	107.5%	
EX-W1	2.3 GHz	2.5 GHz	2.1 GHz	96.0%	$7 / 12 \mathrm{chips}$
EX-W2	2.1 GHz	X	100 kHz	90.8%	
EX-W3	1.5 GHz	U	1.2 GHz	87.8%	
EX-W4	X	U	X	91.1%	

'U' denotes unstable or partial operation.
' X ' denotes no meaningful output.
${ }^{\text {a }}$ Measured I_{c} over designed I_{c}
${ }^{\text {b }}$ Note that MANA chips were tested only up to 100 kHz .

Comparison with other demonstrated adiabatic work

	[1]	[2]	[3]	This work	This work
Circuit	$\begin{aligned} & 16 \mathrm{~b} \\ & \text { CLA } \end{aligned}$	8 b DLX processor	16 b MIPS processor	4 b MANA processor	$\begin{aligned} & 4 \mathrm{~b} \text { EX (ALU- } \\ & \text { shifter) } \end{aligned}$
Status	Tested	Tested	Layout in progress	Tested	Tested
Technology	$\begin{aligned} & 0.8 \mu \mathrm{~m} \\ & \text { CMOS } \end{aligned}$	$0.18 \mu \mathrm{~m}$ NMOS	90 nm CMOS	AQFP $\mathrm{Nb} / \mathrm{AlO}_{x} / \mathrm{Nb}$	AQFP $\mathrm{Nb} / \mathrm{AlO}_{x} / \mathrm{Nb}$
Clk. Rate	4 MHz (tested)	880 kHz (tested)	0.5 GHz (simulated)	100kHz (tested)	2.5 GHz (tested)
Supply	2.5 V dc	1.8 V dc	1 Vdc	1 mA ac	1 mA ac
Energy/op	4 pJ	8.5 pJ	$3 \mathrm{fJ}{ }^{\text {a }}$	15 fJb	$1.6 \mathrm{fJ}{ }^{\text {b }}$

[1] J. Lim et al., IEEE JSSC, vol. 34, no. 6, pp. 898-903, Jun. 1999.
[2] S. Kim et al., in Proc. of Comp. Frontiers - CF '05, 2005.
[3] R. Celis-Cordova et al., in IEEE ICRC, Nov. 2019.
${ }^{a}$ Authors simulated 3 b shift register. AQFP equivalent is 4.2 aJ with cooling.
${ }^{\mathrm{b}}$ Already includes cooling overhead coefficient of 1000x.

- Wide AC1/AC2 excitation margins
- $5 \mathrm{~dB} / 4.6 \mathrm{~dB}$ for MANA at 100 kHz
- $2.6 \mathrm{~dB} / 2.4 \mathrm{~dB}$ for EX chip at 2.5 GHz
- Measured tests repeatable across multiple chips and wafers.
- Superior speed and energy when compared with other demonstrated adiabatic work.
- More work to be done to have a clear competitive edge over bleeding edge FinFET.

Outlook

Comparison of AQFP INV and FinFET INV FO3/FO4

How do we move forward with AQFP logic?

	AQFP	5 nm FinFET	7 nm FinFET
Power Supply	$2 \times 1 \mathrm{~mA} \mathrm{AC}+1 \mathrm{~mA} \mathrm{DC}$	$0.45 \mathrm{~V} \sim 0.65 \mathrm{~V}$	$0.45 \mathrm{~V} \sim 1 \mathrm{~V}$
Delay (ps)	$\sim 10[3]$	$? ? \sim 8.3$	$0.667 \sim 40$
Switching Energy (fJ)	$\sim 0.0014 @ 5 \mathrm{GHz}$	$0.106 \sim 0.291$	$0.111 \sim 1.317$

Includes 1000x cooling overhead for AQFP

Area efficiency

Cell-level

- Advanced process such as MIT LL SFQ5ee [1]
- Directly coupled QFP (DQFP) [2]
- Novel compact memory

Design methodology

- Physical rows with multiple excitation phases available

Latency / clock distribution

- Delay line clocking [3]
- Power divider clocking [4]
- Clock domain crossing synchronizers

Flux trapping

- Moat embedded interconnects [5]
[1] Y. He et al., Supercond. Sci. Technol., vol. 33, no. 3, p. 035010, Feb. 2020.
[2] N. Takeuchi et al., Supercond. Sci. Technol., vol. 33, no. 6, p. 065002, May 2020.
[3] N. Takeuchi et al., Appl. Phys. Lett., vol. 115, no. 7, p. 072601, Aug. 2019.
[4] Y. He et al., Appl. Phys. Lett., vol. 116, no. 18, p. 182602, May 2020.
[5] C. J. Fourie et al., IEEE Trans. on Appl. Supercond., vol. 30, no. 6, pp. 1-9, Sep. 2020.
[6] K. Jackman et al., IEEE Trans. on Appl. Supercond., vol. 27, no. 4, pp. 1-5, Jun. 2017.
[7] IARPA SuperTools research program

FinFET data sources:

- E. Sicard, Introducing 7-nm FinFET technology in Microwind. 2017.
- A. Stillmaker and B. Baas, "Scaling equations for the accurate prediction of CMOS device performance from 180nm to 7nm," Integration, vol. 58, pp. 74-81, Jun. 2017.
- N. Collaert, "Device architectures for the 5nm technology node and beyond," presented at the SEMICON Taiwan, 2016.
- S. Sinha et al., "Design benchmarking to 7 nm with FinFET predictive technology models," in Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics and design - ISLPED '12, Redondo Beach, California, USA, 2012, p. 15.

Summary

- AQFP Logic
- Superconductor logic using Josephson junctions operating adiabatically
- Energy dissipation: $1.4 \mathrm{aJ} / \mathrm{op}$ at 5 GHz (includes cooling)
- MANA processor
- 4-bit prototype design to show AQFP logic can do both processing and storage
- $\mathrm{Nb} / \mathrm{AlO}_{x} / \mathrm{Nb} 10 \mathrm{kA} / \mathrm{cm}^{2}$ superconductor process
- Key processor operations demonstrated: R/W, ALU execution, stalling, program branching at 100 kHz
- Standalone EX stage operated up to 2.5 GHz
- First demonstration of adiabatic computing using superconductor logic
- Promising technology platform for next generation data centers and supercomputers
- Challenges still exist particularly in improving area efficiency and latency at large-scale

Stage-by-stage summary of MANA

Stage	Description	Total JJs	Latency (cycles)	fJ/opa	
IDI	Instruction buffer, Decode, Issue	5596	8	3.917	
RFX	Register File with eXternal I/O interface	8142	8	5.699	
EX	EXecution stage (ALU-shifter)	2238	9	1.567	
WB	Write Back, ctrl, buffering, routing	5484	2	3.839	
		Total:	$\mathbf{2 1 4 6 0}$	$\mathbf{2 7}$	$\mathbf{1 5 . 0 2 2}$

Includes 1000x cooling overhead

Questions?

Thank You

This work was supported by the Grant-in-Aid for Scientific Research (S) No. 19H05614 and the Grant-in-Aid for Early Career Scientists No. 18K13801 from the Japan Society for the Promotion of Science (JSPS).

This work was also supported by the VLSI Design and Education Center (VDEC) of the University of Tokyo in collaboration with Cadence Design Systems, Inc.

The circuits were fabricated in the Clean Room for Analog-digital superconductiVITY (CRAVITY) of the National Institute of Advanced Industrial Science and Technology (AIST) using the high-speed standard process (HSTP).

[^0]: －YоконамA National University

