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Outline

• Quantum computing

 superconducting transmon qubit

• Performance limitations

 loss mechanisms

• Predicting dielectric loss in qubit designs

 analytical vs. FEM approaches

• Implications for quantum computing

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. 
Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020. 

2



©2020 IBM Corporation5

IBM Quantum

• lithography is no longer sufficient in improving device performance

• new materials and new geometries enable continued scaling:

 High-K dielectric gate oxides

 Si1-xGex source / drain / channel regions

 3D transistors

• fighting Boltzmann tyranny:

• new computing paradigms are emerging

Scaling in conventional computing

~
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G. Tsutsui et al., AIP Advances 9, 030701 (2019)
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Computing with qubits
Classical bits Quantum bits
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Quantum Computing 
Technologies Neutral Atoms
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Solid-state defects
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Superconducting CircuitsSuperconducting Circuits
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Superconducting 
Microwave Resonators:
 read-out of qubit states
 multi-qubit quantum bus
 noise filter 

Superconducting Qubit:
Anatomy of a Superconducting Qubit:  Transmon

100 nm
X 100 nm 

 Josephson Junction as a non-linear inductor

Anharmonicity =  ω01 - ω12

J. Koch et al., PRA 76, 042319 (2007)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. 
Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020. 

6



©2020 IBM Corporation9

IBM Quantum
Evolution of Superconducting Qubit Lifetimes

• increase from nanoseconds
to 100 µs over 2 decades

 materials

 processing

 design

 infrastructure
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What mechanisms can affect qubit coherence?

• dielectric loss

• spontaneous emission (Purcell loss)

• magnetic fields

• thermalization

• parasitic modes

• others (cosmic rays?)

radiation

phonons

quasiparticles

vortices

X
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IBM QuantumDielectric loss

Two-level system (TLS)

• radiative dissipation

 alignment of dipole frequency, moment

 greater absorption at low power (unsaturated)

• extrinsic (contamination) vs. intrinsic behavior

• continuum approximation → tan(δ) = 

J. Lisenfeld et al., arxiv1909.09749

J.M. Martinis et al., PRL 95, 210503 (2005)

Im ε
Re ε
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IBM QuantumProcessing effects:  CPW resonators

 damage / amorphization due to ion milling

C.M. Quintana et al., APL 105, 062601 (2014)

 residual contamination

Quality factor:  Q = ωr T1 Quality factor:  Q = ωr T1
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Materials matter

• consider qubits with interdigitated capacitors

• Al / Al2O3 / Al Josephson junctions

• evaporated Al vs. sputtered TiN or Nb
shunting metallization

 extrinsic or intrinsic effects ?

J.B. Chang et al., APL 103, 012602 (2013)
J.M. Gambetta et al., IEEE TAS 27, 1700205 (2017)

Quality factor:  Q = ωq T1
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• interdigitated capacitors (IDC) → rectangular capacitors

• equivalent capacitance (proximity vs. size)

J.M. Gambetta et al., IEEE TAS 27, 1700205 (2017)

 significant difference in electric field energy distributions
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Participation:  relative fraction of electric field energy, Ui / Utot, within various regions

• Substrate-to-metal (SM)

• Substrate-to-air (SA)

• Metal-to-air (MA)

Quantifying E-field energy

Consider thin, contamination layers:

 disparity in length scales between metallization (µm) and contamination (nm)

 singular E-field distributions near edges of metallization

Ui = �
𝑉𝑉𝑖𝑖
𝜀𝜀𝑐𝑐 𝐸𝐸 � 𝐸𝐸∗𝑑𝑑𝑉𝑉 Silicon Substrate

Substrate-Air (SA) Metal-Air (MA)

Substrate-Metal (SM)

Niobium
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IBM QuantumApproximation:  surface participation

• contamination layer thickness, t, may be unknown

 replace volume integral with surface integral (sheet):

Pi
𝑡𝑡
≡ 𝑝𝑝𝑖𝑖 =

∫𝑆𝑆𝑖𝑖 𝜀𝜀𝑐𝑐 𝐸𝐸 � 𝐸𝐸 𝑑𝑑𝑑𝑑

Utot

 assumes linear dependence with t

 singular E-fields → divergent integral at metallization bottom (y = 0)

 consider pi behavior as a function of distance, y, from metallization bottom

metallizationmetallization

SM
y

x = -ax = a x = -bx = b

x
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IBM QuantumFinite Element Method (FEM) solutions

 versatile

× interpolation of weak formulation

2a = 20 µm, b – a = 60 µm

 need analytical approach that can properly account for E-field singularities 

 logarithmic dependence vs. depth

 FEM approach exhibits roll-off
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IBM QuantumAnalytical modeling of (volume) participation

consider quasi-static distribution of E-fields in a 2D slice (∇2ϕ = 0):

Ui = �
𝑉𝑉𝑖𝑖
𝜀𝜀𝑐𝑐 ∇𝜑𝜑 � ∇𝜑𝜑 𝑑𝑑𝑉𝑉 = �

𝑆𝑆𝑖𝑖
𝜀𝜀𝑐𝑐 𝜑𝜑 �𝑛𝑛 � ∇𝜑𝜑 𝑑𝑑𝑑𝑑

• Green’s first identity (1828):

𝐸𝐸 = −∇𝜑𝜑where

x = -a

y

x = a
ϕ = +ϕ0 ϕ = -ϕ0x

x = -bx = b

} δ

E

 integrate along contour𝜑𝜑, �𝑛𝑛 � 𝐸𝐸
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IBM QuantumSolution:  effect of dielectric constants (ε)

E-field boundary conditions dictated by difference in εi:

SM

SA

MA

x = -a

y

x = aϕ = +ϕ0 ϕ = -ϕ0
x

x = -bx = b
E

𝜀𝜀1𝐸𝐸1⊥ = 𝜀𝜀2𝐸𝐸2⊥
Assume all εc are equal:

 for small δ, Pi values are linearly dependent

PSM / PSA ~ (εsub / εc)2   ~  1 - 6

PMA / PSM ~ (1 / εsub)2     ~  0.01

𝐸𝐸1
∥ = 𝐸𝐸2

∥
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Analytical modeling of participation C.E. Murray et al., IEEE TMTT 66, 3724 (2018)

assume all εC = 5.0, εsub = 11.45

 δ → 0, participation → 0

 nonlinear dependence vs. δ

k ≡
a
bPSA

δ
a

~
ϵc

ϵsub + 1
1

2 1 − k K′ k K(k)
δ
a

ln 4
1 − k
1 + k

−
k ln k
1 + k

+ 1 − ln
δ
a

 analytical approximation (qubits & coplanar waveguides):

 a ↑ →  PSA ↓   (larger gap)

 b ↑ (k ↓ ) → PSA ↓ (larger paddle width) a

b
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IBM QuantumResults
Combine participation values with 
experimentally measured quality factors:

• use SA participation

• linear trend for smaller designs

 dielectric loss dominates smaller qubit
(larger participation) designs

• saturation in Q values of larger qubits

 other mechanisms impact performance

J.M. Gambetta et al., IEEE TAS 27, 1700205 (2017)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. 
Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020. 

19



©2020 IBM Corporation22

IBM QuantumSubstrate trenching

 reduction in effective dielectric constant of substrate

how is participation affected?

A. Bruno et al., APL106, 182601 (2015) W. Woods et al., PR App. 12, 014012 (2019)
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IBM QuantumConformal mapping of trenched geometries

Consider CPW slice:

 assume 1D metallization

 transform trenched geometry to untrenched, half-space

 use analytical approximation of surface participation

 transformed contamination layer thickness (δ) is no longer constant

contamination

metallization

2a’ b’ – a’

contamination

metallization

2a b - a

tx x
x xx x

x x δ {
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Results:  trenched CPW participation (2a = 10 µm, b - a = 6 µm)

 SM participation exhibits monotonic decrease with t

 SA trench bottom participation follows SM participation

 SA sidewall contribution saturates for t > 50 nm
C.E. Murray, IEEE TMTT, 68 3263 (2020)

SM SA
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IBM QuantumAssessing dielectric loss in superconducting transmons

Participation (Pi):
• SA, SM ~ 10-4

• MA ~ 10-6

• substrate ~ 0.9
[ εsub/(εsub+1) ]

1
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡

= �𝑃𝑃𝑖𝑖 tan 𝛿𝛿𝑖𝑖 +
1
𝑄𝑄0

Loss Tangent:
• SA, SM ~ 10-3

• MA ~ 10-3

• substrate < 10-7

Mitigating circumstances:
 damage, amorphization
 impurities
*   junction size

participation
independent

term
SA, SM

MA,
junction*

substrate
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IBM QuantumImplications for performance: quantum volume

exponential trend in quantum volume growth
 doubling every year
 2020: Montreal (27Q)
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metric for assessing
quantum computing performance:

 number of qubits

 gate fidelity / error rate

 circuit width

 circuit depth

A.W. Cross et al., PRA 100, 032328 (2019)
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Summary and Conclusions

Superconducting quantum computing

• improvements in materials, design, processing

• reduction in relaxation due to dielectric loss 

 search for lower-loss dielectrics

 identify next level of limiting mechanisms

 increase in quantum volume

https://www.ibm.com/quantum-computing/
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