

Simulating Loss in Superconducting Qubits

Conal E. Murray (conal@us.ibm.com) IBM T.J. Watson Research Center, Yorktown Heights, NY

ASC 2020: QE2 - Quantum Engineering & its Applications for Computing & Networks November 5, 2020

Outline

- Quantum computing
 - superconducting transmon qubit
- Performance limitations
 - Ioss mechanisms
- Predicting dielectric loss in qubit designs
 - > analytical vs. FEM approaches
- Implications for quantum computing

Scaling in conventional computing

- lithography is no longer sufficient in improving device performance
- new materials and new geometries enable continued scaling:
 - High-K dielectric gate oxides
 - > Si_{1-x}Ge_x source / drain / channel regions
 - ➢ 3D transistors

©2020 IBM Corporation

5

• fighting Boltzmann tyranny:

$$\frac{\Delta V_{\min}}{\text{decade}} \sim \frac{k_B T}{e} \ln(10)$$

• new computing paradigms are emerging

IBM Quantum

wall321.com

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020.

Computing with qubits

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020.

lons

Credit: S. Debnath and E. Edwards/JQI Monroe Group, University of Maryland/JQI

Solid-state defects

NV Centers, Phosphorous in Si, SiC defects, etc.

Image from Hanson Group, Delft

Photons

Image from the Centre for Quantum Computation & Communication Technology, credit Matthew Broome

Quantum Computing Technologies

Superconducting Circuits

Image from Kouwenhoven Group, Delft

Image from Cheng Group, University of Chicago

Anatomy of a Superconducting Qubit: Transmon

IBM Quantum

2020

Evolution of Superconducting Qubit Lifetimes

increase from nanoseconds Best 10-3 to 100 μ s over 2 decades Repeatable Coherence time (seconds) 10-4 materials 10-5 processing 10-6 10-7 design \geq 10-8 infrastructure 10-9 2000 2004 2008 2012 2016

10-2

Year

What mechanisms can affect qubit coherence?

- dielectric loss
- spontaneous emission (Purcell loss)
- magnetic fields
- thermalization
- parasitic modes
- others (cosmic rays?)

¹⁰ ©2020 IBM Corporation

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021. Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020.

Dielectric loss

Two-level system (TLS)

• radiative dissipation

> greater absorption at low power (unsaturated)

- extrinsic (contamination) vs. intrinsic behavior
- continuum approximation $\rightarrow \tan(\delta) = \frac{\text{Im}[\epsilon]}{\text{Re}[\epsilon]}$

J. Lisenfeld et al., arxiv1909.09749

J.M. Martinis et al., PRL 95, 210503 (2005)

¹¹ ©2020 IBM Corporation

Processing effects: CPW resonators

residual contamination

damage / amorphization due to ion milling

C.M. Quintana et al., APL 105, 062601 (2014)

Materials matter

- consider qubits with interdigitated capacitors
- AI / AI₂O₃ / AI Josephson junctions
- evaporated AI vs. sputtered TiN or Nb shunting metallization
 - > extrinsic or intrinsic effects ?

J.B. Chang et al., APL **103**, 012602 (2013) J.M. Gambetta et al., IEEE TAS **27**, 1700205 (2017)

Evolution of Transmon Design

- interdigitated capacitors (IDC) \rightarrow rectangular capacitors
- equivalent capacitance (proximity vs. size)
 - significant difference in electric field energy distributions

Quantifying E-field energy

Participation: <u>relative fraction</u> of electric field energy, U_i / U_{tot}, within various regions

- Substrate-to-metal (SM)
- Substrate-to-air (SA)
- Metal-to-air (MA)

$$\mathbf{U}_{\mathbf{i}} = \int_{V_{\mathbf{i}}} \varepsilon_{c} \, \vec{E} \cdot \vec{E}^{*} dV$$

Consider thin, contamination layers:

- > disparity in length scales between metallization (μ m) and contamination (nm)
- singular E-field distributions near edges of metallization

Approximation: surface participation

contamination layer thickness, t, may be unknown

> replace volume integral with surface integral (sheet):

x assumes linear dependence with t

singular E-fields \rightarrow divergent integral at metallization bottom (y = 0)

 \succ consider p_i behavior as a function of distance, y, from metallization bottom

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 49, March 2021 Invited presentation Wk2EOr4A-04 given at the virtual ASC 2020, November 5, 2020.

IBM Quantum $2a = 20 \ \mu m, \ b - a = 60 \ \mu m$ 200000 Model 180000 FEM 160000 E 140000 120000 100000 }V 80000-0.1 0.01 Distance from metallization bottom, $y [\mu m]$

✓ versatile

× interpolation of weak formulation

FEM approach exhibits roll-off

logarithmic dependence vs. depth

> need analytical approach that can properly account for E-field singularities

Finite Element Method (FEM) solutions

Analytical modeling of (volume) participation

consider quasi-static distribution of E-fields in a 2D slice ($\nabla^2 \phi = 0$):

• Green's first identity (1828):

$$U_{i} = \int_{V_{i}} \varepsilon_{c} \nabla \varphi \cdot \nabla \varphi \, dV = \left[\oint_{S_{i}} \varepsilon_{c} \varphi(\hat{n} \cdot \nabla \varphi) \, dS \right] \text{ where } \vec{E} = -\nabla \varphi$$

$$\succ \text{ integrate } \varphi, \hat{n} \cdot \vec{E} \text{ along contour}$$

¹⁸ ©2020 IBM Corporation

Solution: effect of dielectric constants (ϵ)

E-field boundary conditions dictated by difference in ε_i :

Assume all ε_c are equal:

$$P_{SM} / P_{SA} \sim (\epsilon_{sub} / \epsilon_c)^2 \sim 1 - 6$$

 $P_{MA} / P_{SM} \sim (1 / \epsilon_{sub})^2 \sim 0.01$

 $E_1^{\parallel} = E_2^{\parallel}$ $\varepsilon_1 E_1^{\perp} = \varepsilon_2 E_2^{\perp}$

> for small δ , P_i values are linearly dependent

Analytical modeling of participation

assume all ϵ_{C} = 5.0, ϵ_{sub} = 11.45

- $\delta \rightarrow 0$, participation $\rightarrow 0$
- nonlinear dependence vs. δ
- $ightarrow a \uparrow \rightarrow P_{SA} \downarrow$ (larger gap)

> b ↑ (k \downarrow) → P_{SA} \downarrow (larger paddle width)

analytical approximation (qubits & coplanar waveguides):

$$P_{SA}\left(\frac{\delta}{a}\right) \sim \left(\frac{\varepsilon_{c}}{\varepsilon_{sub}+1}\right) \frac{1}{2(1-k)K'(k)K(k)} \left(\frac{\delta}{a}\right) \left\{ \ln\left[4\left(\frac{1-k}{1+k}\right)\right] - \frac{k\ln(k)}{(1+k)} + 1 - \ln\left(\frac{\delta}{a}\right) \right\} \qquad k \equiv \frac{a}{b}$$

Results

Combine participation values with experimentally measured quality factors:

- use SA participation
- linear trend for smaller designs
 - dielectric loss dominates smaller qubit (larger participation) designs
- saturation in Q values of larger qubits

> other mechanisms impact performance

Substrate trenching

- reduction in effective dielectric constant of substrate
- > how is participation affected?

A. Bruno et al., APL106, 182601 (2015)

W. Woods et al., PR App. 12, 014012 (2019)

Conformal mapping of trenched geometries

IBM Quantum

Consider CPW slice:

- assume 1D metallization
- transform trenched geometry to untrenched, half-space
- use analytical approximation of surface participation
 - > transformed contamination layer thickness (δ) is no longer constant

Results: trenched CPW participation ($2a = 10 \mu m$, b - a = $6 \mu m$)

- SM participation exhibits monotonic decrease with t
- SA trench bottom participation follows SM participation
- SA sidewall contribution saturates for t > 50 nm
- ²⁴ ©2020 IBM Corporation

C.E. Murray, IEEE TMTT, 68 3263 (2020)

Assessing dielectric loss in superconducting transmons

$$\frac{1}{Q_{tot}} = \sum P_i \tan(\delta_i) + \frac{1}{Q_0} \qquad \text{participation} \\ \text{independent} \\ \text{term} \end{cases}$$

Participation (P_i):

- SA, SM ~ 10⁻⁴ SA, SM ~ 10⁻³
- MA ~ 10⁻⁶
- substrate ~ 0.9

Loss Tangent:

- MA ~ 10⁻³
 - substrate $< 10^{-7}$

 $\left[\epsilon_{sub} / (\epsilon_{sub} + 1) \right]$

Mitigating circumstances:

- \succ damage, amorphization
- ➤ impurities
- junction size

 10^{4}

Implications for performance: quantum volume

metric for assessing quantum computing performance:

- > number of qubits
- > gate fidelity / error rate
- circuit width
- ➤ circuit depth

A.W. Cross et al., PRA 100, 032328 (2019)

- doubling every year
- ➤ 2020: Montreal (27Q)

Summary and Conclusions

Superconducting quantum computing

- improvements in materials, design, processing
- reduction in relaxation due to dielectric loss
- search for lower-loss dielectrics
- ➢ identify next level of limiting mechanisms
- ➢ increase in quantum volume

https://www.ibm.com/quantum-computing/

27 © 2020 IBM Corporation

Acknowledgments

- H. Paik
- M. Steffen
- M. Brink
- K. Rodbell
- J. Gambetta
- IBM Q Team