Can Higher Critical Current of Powder In Tube (PIT) Nb₃Sn be further developed without loss of RRR

Chris Segal August 11, 2014

Applied Superconductivity Conference, Charlotte NC

Student Paper Competition

The Fraction Revel Estate of PIT

Small Grain A15 - 42%

Large Grain A15 - 13%

Remnant Core A15 - 2%

Residual Core - 20%

- The diffusion barrier is fragile and the reaction must be carefully managed
- Only small grain A15 carries current.

Are the large grains really contributing to current carrying capability?

LG A15 appears very disconnected

And here we can see Cu-rich phases penetrating between LG's

630C200h B29992 Longitudinal Cross Section

How do we make **more current carrying** superconducting A15 phase?

We must do this while maintaining...

- High Residual Resistance Ratio (RRR)
 - Keep diffusion barriers intact
- High grain boundary (GB) density
 - Produce small grains

Shape Analysis shows non-uniform deformation 1.18 1.16 1.14 **Aspect Ratio** 1.12 1.1 1.08 1.06 1.04 6 1 2 3 4 7 200 µm 1.04Ring Number 200 µm

How RRR varies within filament pack

-Serial etching experiment

RRR varies depending on local Cu quality

There is clearly a zone more susceptible to leaks which is found in rings 6 & 7

Longer reaction time will not help! Where else can we make gains in J_c?

Two distinct filament types

An intermediate Cu-Nb-Sn phase (Nausite) forms in internal tin strands^[1]

Phase illustration by C. Sanabria

[1] I. Pong, L.-R. Oberli, and L. Bottura, "Cu diffusion in Nb₃Sn internal tin superconductors during heat treatment," Supercond. Sci. Technol., vol. 26, no. 10, p. 105002, Oct. 2013.

EDS results show Cu rich membrane

Residual Core

500 nm

element	AT%
Nb	71
Sn	23
Cu	4
Та	2

LG A15

Membrane

(likely ε phase)

 \mathbf{X}

	element	%	
<u>س ب</u>	Nb	95	
47	Sn	.5	676
a 14.	Cu	4.5	8
$\sim l_{c}^{2}$	Та	0	
100	ALC: NOT THE OWNER WATER		

630C240h B31284

SG A15

Comparison of typical and atypical filaments

9	Nb	18.2	
	SG A15	46.3	
0	LG A15	10.2	
	Core	25.3	
	1.1		
	element	% chai	nge
	element Nb	% chai -20	nge
	element Nb SG A15	% chai -20 +12	nge
C	element Nb SG A15 LG A15	% chai -20 +12 -25	nge

element

AT%

12% increase in the good stuff!

Comparison of end phase fractions of PIT and RRP

Condition and Component %	54/61 RRP [®] (Tarantini SuST 2014)	PIT 192 (CS evaln 2013)	PIT 192 (CS evaln 2014 –atypical filaments
HT	620C, 192h	650°C, 100 h	630°C, 240 h
RRR	377	177	177
A15 total %	58.8	56	56.7
A15 SG %	58.8	40	46
A15 LG %		16	10.7
Residual DB %	8.1	24.5	17.6
Residual core %	33.1	19.5	25.7

* = 169 and 217 RRP[®] stacks need ~10% residual DB

Increase in SG A15 without loss of RRR!

Findings for discussion

- A Cu rich membrane to mediate the reaction appears VERY useful
 - Why does this membrane form and why does it positively affect A15 growth?
- The issue better control the reaction path:
 - Can we avoid large grain A15?
 - Consume all present Sn in package to produce current carrying SG A15
- The payoff?
 - Typical filaments have a 3:1 SG:LG ratio
 - Untypical filaments have a 4:1 SG:LG ratio!
 - Even more valuable, the total amount of SG A15 is enhanced from an average of 41% to 46%, a 12% increase surely beneficial for J_c

Acknowledgements

Applied Superconductivty Center (ASC), NHMFL, FSU

David Larbalestier Peter Lee

Chiara Tarantini

European Organization for Nuclear Research (CERN)

Amalia Ballarino Luca Bottura Christian Scheuerlein Luc-Rene Oberli Bernardo Bordini David Richter

Bruker EAS GmbH

Bernd Sailer Vital Abaecherli Manfred Thoener Klaus Schlenga

