IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2014 (Preview 1). ASC 2014 presentation and paper 2EPo2C-10; 2nd Prize in Best Student Paper Contest, Electronics.

Applied Superconductivity Conference 2014, Charlotte Convention Center, NC

Optimization of an AC/DC High- T_c SQUID Magnetometer Detection Unit for Evaluation of Magnetic Nanoparticles in Solution

<u>Mohd Mawardi Saari</u>, Yuichi Ishihara, Yuya Tsukamoto, Toki Kusaka, Koji Morita, Kenji Sakai, Toshihiko Kiwa, Keiji Tsukada

Graduate School of Natural Science and Technology, Okayama University

11th August 2014

Introduction

• Magnetic nanoparticles (MNPs) : nm-order particles with magnetic cores

• Narrow distribution of particle size etc.

The performance of MNPs in each applications is influenced by fundamental characteristics

Evaluation of magnetic properties by magnetic susceptibility method

Pro

- Conventional low- T_c SQUID magnetometer
- High sensitivity (low- T_c SQUID)

Con

High-running cost (multi-sample measurement)

Alternative to a highly sensitive magnetometer for evaluation of MNPs

Introduction

We developed a magnetometer using high-T_c SQUID

- ✓ Compact and highly sensitive
- ✓ Low-running cost
- ✓ Measurement of MNPs in solution
- ✓ AC and DC magnetization measurement functions

M. M. Saari et al., J. Phys. Conf. Ser., vol. 507, no. 4, p. 042035, May 2014.

<u>Outline</u>

- I. AC/DC high- T_c SQUID magnetometer
- II. Optimizations of AC/DC detection unit
 - 1. Excitation field
 - 2. AC/DC detection coil
- III. Measurement of low concentrated iron oxide nanoparticles solutions

Detection Method

• High-T_c SQUID with flux-transformer

(Superconductivity Research Laboratory-International Superconductivity Technology Center)

٠

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2014 (Preview 1). ASC 2014 presentation and paper 2EPo2C-10; 2nd Prize in Best Student Paper Contest, Electronics.

Optimization of DC Detection Coil

Optimization of AC Detection Coil

Reduction of AC magnetic field interference

- Previous system: sensitive axis of axial type differential coil was placed perpendicular to the excitation field.
- Substantial reduction in interference was difficult. (Gradient of magnetic field, slight differences in alignment and characteristics of each coils)

We proposed a compensation coil technique.

Improvement of usable dynamic range: Planar differential coil in series with a compensation coil

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2014 (Preview 1). ASC 2014 presentation and paper 2EPo2C-10; 2nd Prize in Best Student Paper Contest, Electronics.

Characteristics of Detection Coil

- Improved dynamic range and sensitivity
- One SQUID for both functions

Excitation Magnetic Field

• Improvement of magnetic field resolution by secondary excitation coil

Evaluation of Iron Oxide Nanoparticles Solutions

nanomag®-D-spio 100 nm

- Stock solution was further diluted in purified water
- Encased in 15 mm × 20 mm × 10 mm of acrylic cases

Low-concentrated solutions Iron oxide concentration :

72 μg/mL (dilution factor : 33)

Magnetization curve of iron oxide nanoparticles solution before and after subtraction of measured diamagnetic contribution of water.

 Diamagnetism of water deformed the magnetization curve of low concentration iron oxide solution

Measurement of Harmonics

Harmonics intensity at different DC magnetic fields

AC magnetic field : 30 mT_{pp}, 5 Hz

- Harmonics were correlated with the concentrations.
- Proper bias of DC magnetic field improved the detection sensitivity.

Summary

- \checkmark We developed an integrated AC/DC magnetometer using high- $T_{\rm c}$ SQUID.
- Improvements in sensitivity and usable dynamic range were achieved by optimized detection unit.
- Highly sensitive evaluation of low-concentrated iron oxide nanoparticles in solution was shown by the developed system.

Acknowledgement

This work is supported by the "Strategic Promotion of Innovative R&D" of the Japan Science and Technology Agency (JST).