

ASC 2022 StdP-E-03

60-GHz Single Flux Quantum Pulse Transfer Circuit for Serial Biasing

Ashish Shukla^{1,2}, Dmitri E. Kirichenko¹, Timur V. Filippov¹, Anubhav Sahu¹, A. Erik Lehmann³, and Mingoo Seok²

¹HYPRES Inc., NY ²Columbia University, NY ³Formerly with HYPRES Inc., NY

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/ StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

Distribution statement A: Approved for public release; distribution is unlimited. DCN #: 43-10325-22

Ashish Shukla

Dmitri Kirichenko

Timur Filippov

Anubhav Sahu

A. Erik Lehmann

Mingoo Seok

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/ StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

Parallel Bias (PB) vs Serial Bias (SB)

- Parallel bias for circuit blocks
- Galvanic Connection for Clock and Data Pulses

Serial Bias (SB)

- Serial bias for circuit blocks
- Galvanic Isolation for Clock and Data Pulses
- I_{SB}=I_{PB}/N, N is number of islands

Serial Biasing reduces

- Number of bias current leads and associated heat load
- > The total bias current delivered to a chip and associated on-chip magnetic fields

The new Grapevine (GV) Biasing Approach

- > 3x3 matrix of 3-to-2 counters with BER<10⁻¹² at 20GHz
- A. Shukla et al, "Pulse interfaces and current management techniques for serially biased RSFQ circuits," TAS 2022, Art #1300407
- Adaptation of the recent results to the RSFQ/ERSFQ standard cell library as a part of the SuperTools program led by IARPA
 - 4-island test structure for SuperTools cell library, BER<10⁻¹² at 50GHz
 - A. Shukla et al, "Serial biasing technique for electronic design automation in RSFQ circuits," ASC'22, 4EPo1B-01
- In this work we address Driver-Receiver Pair (DRP) design, test and simulation results

Grapevine Biasing Approach

- Any metal layer to carry "current in" has a dedicated metal layer to carry "current out"
- These metal layers are always placed above each other to localize magnetic fields in between

DRP: Schematic, Layout, and Cross-section

Key layout features are

- M5 "tongue" [1]
- Staggered M4 and M7 ground moats [2]
- Additional layers used to shield ground moats [2]

DRP: Schematic, Layout, and Cross-section

Straightforward (SF) current flow

7

The metal layers stack (c) is given for 100µA/µm² SFQ5ee fab node at MIT-LL.

DRP: Schematic, Layout, and Cross-section

Grapevine (GV) current flow

8

The metal layers stack (c) is given for 100µA/µm² SFQ5ee fab node at MIT-LL.

PSCAN [1] and Cadence Spectre [2] used for circuit simulation and optimization

[1] S. Polonsky, et al., IEEE Trans. Appl. Supercond., vol. 7, no. 2, pp. 2685-2689, Jun 1997.

[2] A. Inamdar, J. Ren and D. Amparo, IEEE Trans. Appl. Supercond., vol. 25, no. 3, Jun 2015, Art no. 1300308.

Simulating the Driver Receiver Pair (DRP)

11

(a) DRP testbed with straightforward (SF) biasing

(b) DRP testbed with grapevine (GV) biasing

- **3.2 mA bias current required**
- Pseudo Random bit Sequence (PRBS) circuit produces random data with 127-bit periodicity
 IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/ StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

Low Frequency (LF) Test Results (SF vs GV)

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/ StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

BER vs Serial Bias Current at 10.16 GHz for SF vs GV

BER vs Serial Bias Current at 10.16 GHz after 4 Defluxes (Grapevine Biasing)

Grapevine biasing results in repeatable margins across multiple defluxes 14 *LEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/*

C & ESAS SUPERCONDUCTIVITY NEWS FORUM (global eattion), March 2023. Presentation 4E0r2A-05/ StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

- **T-Flip-Flop precedes the HF driver**
- High sensitivity to missed or added pulse

16

StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

Sonnet-Based EM Simulations: SF Biasing

17

 IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/ StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

Sonnet-Based EM Simulations: GV Biasing

 IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), March 2023. Presentation 4EOr2A-05/

 StdP-E-03 was given at Applied Superconductivity Conference, Honolulu, HI, USA, October 23-28, 2022.

Comparing M4 densities for SF and GV Biasing 🕅

Location	SF Current Density (A/m)	GV Current Density (A/m)	Ratio SF/GV
Α	620	40	15.5
В	600	40	15.0
С	1600	40	40
D	260	40	6.5
E	3300	35	94.3
F	2400	35	68.6
G	120	20	6.0
н	510	20	25.5

- Straightforward biasing has M4 current densities 6-100 times greater than in case of grapevine biasing
- Grapevine biasing results in well behaved M4 current distribution

- We designed a driver-receiver pair (DRP) for serially biased RSFQ circuits and tested it up to 60 GHz with a BER of 10⁻¹²
- ❑ We show that the grapevine technique must be used even for bias current values on the scale of 1 mA
- We proved that the grapevine biasing scheme helps improve the circuit margins
- □ The test results are confirmed by EM simulations

- This work was supported in part by ONR
- We are grateful to MIT-LL fab team for fabricating the chips
- Authors would like to thank M. Eren Çelik, B. Chonigman, A. Kadin, M. Habib, and S. Tolpygo for their help and fruitful discussion

22

Thank You!