

WIRING UP SUPERCONDUCTING QUBITS

Irfan Siddiqi

Computational Research and Materials Sciences Divisions, Lawrence Berkeley National Laboratory Department of Physics, University of California, Berkeley

THE QUANTUM INFORMATION PARADIGM SHIFT

(Z370: www.pcworld.com)

• Start with a good switch...

- Advanced materials science, electromagnetism, and thermodynamics at the nm scale
- Different functional units (processor, memory,..)
- Qubits: Write 0 and 1, Read 0 or 1
- N quantum bits *entangle* to form 2^N states !
- Scaling entanglement (correlation between bits) is hard! → decoherence & "cross-talk"

QUANTUM IS FUNDAMENTALLY DIFFERENT AT ALL LEVELS!

A QUBIT IS JUST A NONLINEAR OSCILLATOR

QUBIT UNIFORMITY

Key improvements:

- ultrasonically assisted development -
- O₂ plasma uniformity -
- dynamic oxidation -
- decreased evaporation rate -

arXiv: 1909.09165

Qubit Frequency

[GHz]

36 Wafers

MULTI-QUBIT CHIP LIFETIMES

OUBIT COHERENCE

PICKING A GEOMETRY AND SIZE

Resonance freq. 5-6 GHz

Geometry dependence of radiation Q and surface participation

Conservative bound for radiation loss: Qubit surrounded by a perfect absorber (PML)

MODE ENGINEERING

Suppressing package + chip modes

- Dilute substrate permittivity
- 300 micron gap -> 12 GHz parallel plate mode
- Increase gap to 2 mm-> 18 GHz parallel plate mode

Spurious mode identification and mitigation

Hybrid CPW-CPS resonators with higher spurious mode frequencies

10 GHz slotline mode 17 Gl

e 17 GHz slotline mode

CROSSTALK (THE LONELY BONDPAD)

- Control line coupled to a single qubit, with 8 qubits on the chip.
- Lower bound on in chip with full circuitry.
- Dominant mechanism is radiation from bondpad in this simple case.

#4	Ĩ.	#5			
#3		#6			
#2		#7	•		
#1		#8	<u>II</u>		
100x100 um ²					

bondpad

PICKING A GEOMETRY AND SIZE

Resonance freq. 5-6 GHz

Geometry dependence of radiation Q and surface participation

Conservative bound for radiation loss: Qubit surrounded by a perfect absorber (PML)

MODE ENGINEERING

Suppressing package + chip modes

- Dilute substrate permittivity
- 300 micron gap -> 12 GHz parallel plate mode
- Increase gap to 2 mm-> 18 GHz parallel plate mode

Spurious mode identification and mitigation

Hybrid CPW-CPS resonators with higher spurious mode frequencies

10 GHz slotline mode

e 17 GHz slotline mode

CROSSTALK (THE LONELY BONDPAD)

- Control line coupled to a single qubit, with 8 qubits on the chip.
- Lower bound on in chip with full circuitry.
- Dominant mechanism is radiation from bondpad in this simple case.

0 dB 1	_	1 1 1 1	
Power crosstalk		Excitation on Qub	
-80 dB			
100	0 μ m	Bondpad Width	1000 μm

#4	Ē	#5			
#3		#6	Ð		
#2	Ē.	#7	•		
#1		#8			
100x100 um ²					

bondpad

GEN2 PACKAGING WAS DESIGNED TO ACCOMMODATE UP TO 20 X 20 mm² CHIPS WITH UP TO 40 RF LINES AND STRIPLINE PRINTED CIRCUIT BOARDS TO MININIMIZE CROSS-TALK

SIMULATIONS

- Input port matching < -25dB over 2-8 ٠ GHz band (-30dB at 5 GHz)
- Next-neighbor cross-talk levels is below ٠ -55dB over 2-8 GHz band for the closest pair of lines on the Trailblazer chip and below -72dB for other pairs of lines

12-line version for Trailblazer chip

MULTI-OUBIT CONTEXT FOR BENCHMARKING GATES

- Reconstructing specific error syndromes using cycle benchmarking
- Able to monitor and correct errors on spectator qubits
- Realistic assessment of algorithmic performance under randomized compiling

RANDOMIZED COMPILING

INCREASING CIRCUIT DEPTH

INFORMATION SCRAMBLING

<u>Qutrit EPR pair</u>: 𝒩(|00⟩ + |11⟩ + |22⟩) Scrambling unitary: $U |i, j\rangle = |2i + j, i + j\rangle$

Goals:

- Realize quantum ternary logic
- Realize scrambling operator (U)
- Demonstrate teleportation is a probe

DECOMPOSING A SCRAMBLER: PERMUTING QUANTUM INFO

Scrambling Unitary U

$$U_{scrambler} |i, j\rangle = |2i + j, i + j\rangle$$

Decomposition of U: 2 Conditional SUM (CSUM) gates

USING THE STATIC ZZ INTERACTION FOR SCRAMBLING

QUANTUM SYSTEMS ACCELERATOR

Atomic

Catalyzing the Quantum Ecosystem

Trapped lons

Superconducting

Circuits

Rydberg Simulators

QSA | BERKELEY LAB

Completing the Quantum Co-Design Cycle

- Single Modules (all)
- 2D Atomic/Ionic Arrays
- 3D Superconducting Arrays
- Control Theory Aided VQA

VQA

SYSTEMS

- Multi-Channel Control
- Fast Feedback
- Monolithic Integration

- NISQ Qubits
- Efficient Gate Compilation
- Noise Protected Qubits
- Control Theory Aided VQA

) APPLICATIONS

- Optimization
- Machine Learning
- Field Theories
- Control Theory
 Aided VQA

FUNDAMENTAL SCIENCE

- Efficient Ansatze
- Quantum Advantage
- Error Mitigation
- Control Theory Aided VQA

23

27