

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

MgB₂ superconducting wires for electric aircraft: advantages and future perspectives

T. Spina, C.E. Bruzek and G. Grasso August 2022 www.asgsuperconductors.com

- Introduction: superconductors for Aircraft
- Status-of-art of Ex-situ MgB₂ wires at ASG superconductors
- MgB₂ improvement: the need of low AC losses conductor
- Conclusions

- Introduction: superconductors for Aircraft
- Status-of-art of Ex-situ MgB₂ wires at ASG superconductors
- MgB2 improvement: the need of low AC losses conductor
- Conclusions

INTRODUCTION: THE N3X AIRCRAFT

https://www1.grc.nasa.gov/aeronautics/eap/airplane-concepts/n3x/

The N3X aircraft assessment predicted a nominally **20-percent fuel burn improvement** for the **superconducting**, fully distributed architecture over an equivalent vehicle with advance turbofan engines mounted on pylons.

INTRODUCTION: ASCEND

The three-year demonstrator project aims to show that an electric- or hybrid-electric propulsion system complemented by cryogenic and superconducting technologies can be more than 2 to 3 times lighter than a conventional system

ASCEND

Advanced Superconducting & Cryogenic Experimental powertraiN Demonstrator

To achieve this objective, ASCEND features a **500kW powertrain** consisting of the following components:

- A superconducting distribution system, including cables and protection item
- Cryogenically cooled
 motor control unit
- A superconducting motor
- A cryogenic system

https://www.airbus.com/en/newsroom/stories/2021-03-cryogenics-and-superconductivity-for-aircraft-explained

WHY SUPERCONDUCTORS FOR ELECTRICAL AIRCRAFT?

A superconductor is a material that shows zero resistance below a critical temperature (T_c)

ADVANTAGES of S.C. w.r.t N.C.:

1. Higher current

2022

2. Lower (almost zero) Joule electrical losses

Superconducting machines can fundamentally achieve:

- higher electrical efficiency
- higher specific power (or power density)

than conventional machines

- 1. Superconductors are lighter than normal conductors (i.e. Cu, Al, etc.)
- 2. Superconductor **specific weight g/m** is mainly driven by the **metallic matrix**
- 3. MgB₂ wire specific weight could be reduce by a **factor 2** if titanium is used instead than nickel alloys matrix (on-going at ASG)

	Material	g/cm ³	Shapes	Wire specific weight	l _c @1T; 20K	kg/(kA-m)
Resistive conductor	Cu	8,94	Tapes or Wires	Dependant on the diameter	1 A/mm ^{2*}	9
	Al	2,71	Tapes or Wires		0,4 A/mm ^{2*}	6,8
Superconductors	MgB ₂	2,57	Tapes or Wires (1,33mm ø)	6-10 g/m	720 A	~0,01
	Bi2223	6,8	Tapes (0,3x4,3 mm)	8 g/m	1100 A	~0,008
	ReBCO	6,3	Tapes (0,2x4mm)	3,5-7 g/m	700-750 A	0,006 to 0,01

*air cooled

HTS ENABLES HYDROGEN POWERED AIRCRAFT

Liquid H₂ is the best coolant for MgB₂ application (T_c=39K)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

www.asgsuperconductors.com

SUPERCONDUCTING MACHINES (IN COLLABORATION WITH SAFRANTECH)

Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

SUPERCONDUCTORS FOR AC STATOR WINDINGS: A RECENT COMPARATIVE STUDY

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 31, NO. 9, DECEMBER 2021

5206807

 TABLE I

 Specifications for a 3 MW, 4500-RPM Aircraft Propulsion Motor

Motors Employing REBCO CORC and MgB₂ Superconductors for AC Stator Windings

Swarn S. Kalsi[®], Life Fellow, IEEE, Rodney A. Badcock[®], Senior Member, IEEE, James G. Storey[®], Member, IEEE, Kent A. Hamilton[®], Member, IEEE, and Zhenan Jiang[®], Senior Member, IEEE

Fig. 1. Conceptual configuration of a superconducting synchronous motor.

Parameter	Value	
Motor Rating Motor Speed Line Voltage Rated power factor Motor diameter Axial length Field excitation winding Armature winding Operating temperature Ambient temperature	3 MW 4,500 RPM ~1000 V 0.9 lag < 500 mm < 800 mm CORC CORC and MgB ₂ 20 K 120 K	

Both motors look attractive if the penalty of the cooling system is ignored—power density (>40 kW/kg) and efficiency (>99%). On the other hand, if refrigerators are needed then the REBCO CORC motor, with its higher AC losses, becomes less attractive.

- Introduction: superconductors for Aircraft
- Status-of-art of Ex-situ MgB₂ wires at ASG superconductors
- MgB₂ improvement: the need of low AC losses conductor
- Conclusions

T_c compatible with operation in LH₂ simple structure and common materials

Nagamatsu et al. 2001 Superconductivity at 39K in magnesium diboride Nature 410 63-4

MGB₂ SUPERCONDUCTING PROPERTIES

Easy process for wire fabrication (PIT: Powder In Tube)

G.Grasso et .al. 2001 Large transport current in unsintered MgB₂ SC tapes APL Volume 72, number 9

300

Low density

100

Compound	Mass density
Copper	8,96 g/cm ³
NbTi	6 g/cm ³
Nb3Sn	5,4 g/cm ³
YBCO	6,35 g/cm ³
BSCCO-2223	6,5 g/cm ³
MgB ₂	2,6 g/cm ³

Advantages:

- 1. Material abundant and low cost (Mg , B, metallic sheaths,..)
- 2. Simple production process (no grain orientation required)
- 3. High mechanical properties in all direction (no need of reinforcements)
- 4. Higher T_c and T_{op} than other metallic materials (LTS)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

www.asgsuperconductors.com

Ex-situ MgB₂ production process unique by ASG production plant installed entirely in Genoa, Italy;

- Actual plant is fully operational for MgB₂ wire production
- MgB₂ chemical synthesis is fully implemented and ready to be used without final heat treatment ("React & Wind" technology, R&W)
- □ Wire unit length today up to 8 Km in a single piece –length
- □ It will be possible up to >20 Km in a single piece-length with the ongoing full scale up of the process and of the plant with a nominal full capacity exceeding >1000Km/y

Clean synthesis of powders

20 meter in-line furnace

WIRE MANUFACTURING EQUIPMENT

Multistep rolling machine

Multistep drawing machine

High power drawing machine

4 meter furnace for annealing HT

QUALITY CONTROL (ISO 9001:2008)

In-line defect detector

- > Quality Control from incoming raw material to the final product
- > Dedicated operative instructions and procedure
- Real time data collections of production and quality records
- > Materials analysis:

- SEM with EDX
- Optical stereomicroscopes
- Fast XRD
- Particle size analyzer

Eddy current detector to check the product integrity

4 camera visual inspection to check the surface appearance

QUALITY CONTROL (ISO 9001:2008)

60

50

40

20

10

0.978

0.984

Frequency 8

Stable and reproducible performances over 800 km of production

Histogram of øRS min Normal

Wire diameter

I_c @25K/0,9 T = 227 A +/- 12

D = 0,992 mm+/- 0,005

0.996

øRS min

1.002

1.008

1.014

0.990

Mean

StDev

N

0.9920

404

0.005462

Production flexibility: different shape and materials possible

Round wires - cables

Special/custom shapes

Materials	Unit piece length
Monel,Ni	Up to 8km

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

17

MR-Open conductor

- Validation of ex-situ ASG MgB₂ React & Wind technology
- Demonstrate the production of MgB₂ with high yield and low cost
- Two-fold improvement in performance over 15 years reduction by 50% of wire needed
- Still a lot of space for improvements!

Reduction of volume possible thanks to s.c. performance improvement!

UPDATED WIRE LAYOUT:

• 12 FILAMENTS

14 FILAMENTS

- IMPROVED FABRICATION PROCESS
- UNIT PIECE LENGTH 4.0 KM

• UNIT PIECE LENGTH 1.6 KM

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

www.asgsuperconductors.com

WIRES PERFORMANCE

2022

Wire 1			
Diameter (mm)	1.3		
Filaments	36		
MgB ₂	17%		
Monel	53%		
Nickel	30%		
Wire 2			
Diameter (mm)	1		

37

12%

46%

15%

13%

14%

Filaments

MgB₂

Monel

Nickel

Copper

Nb

DC APPLICATIONS

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 August 30-31, 2022.

doi:10.1088/0953-2048/27/4/04402

Development of superconducting links for the Large Hadron Collider machine

- 1. DISTRIBUTION OF SEVERAL MW POSSIBLE USING VERY HIGH CURRENT (SEVERAL KA) AT LOW VOLTAGE AND WITH LIMITED LOSSES
- 2. FAULT CURRENT LIMITING PROPERTIES SIMPLIFYING THE DISTRIBUTION SYSTEM (SUPERCONDUCTING-NORMAL TRANSITION)

Ready to be used!

- Introduction: superconductors for Aircraft
- Status-of-art of Ex-situ MgB2 wires at ASG superconductors
- MgB₂ improvement: the need of low AC losses conductor
- Conclusions

AC LOSSES MECHANISMS IN SUPERCONDUCTORS

Туре	Source	Solution
Hysteresis losses (s.c. filament)	from superconducting screening currents	Smaller filament diameter
Coupling losses (s.c. filament)	from current loops crossing the matrix	Smaller twist pitch larger transverse resistivity (e.g. jacketing filaments with cupronickel)
Ferromagnetic losses (matrix)	hysteresis cycles in magnetic materials	Remove magnetic material (Ni, Monel, Fe) → non-magnetic matrix (e.g. Ti)

AC losses reduction in superconductors by wire architecture optimization

CONCLUSIONS

- 1. High-performance, high yield and low-cost conductor → ex-situ MgB₂ wires open unique opportunities to develop affordable and efficient superconducting technologies
- 2. MgB₂ wires present critical current performances, handling and mechanical properties suitable for most of the applications (Motors, DC cables, etc.)
- 3. MgB₂ technology is the perfect solution when associated with Liq H₂ and will help our society to face the challenge toward **reduction of the CO₂ emission**
- 4. Despite MgB₂ was discovered only 20 years ago, ex-situ MgB₂ conductors are already commercially available and ready to be used in medical and other **DC applications** (power grids, links, energy storage, etc.)
- 5. To widen the application field of ASG ex-situ MgB₂ wires, an extensive R&D program is on-going at ASG superconductors in order to reduce **AC losses by wire architecture optimization**

CONTACT PERSON

R&D Manager: *Tiziana Spina* <u>spina.tiziana@as-g.it</u>

Business Development: Gianni Grasso grasso.gianni@as-g.it

Business Development – Power: Christian Eric Bruzek bruzek.christian-eric@as-g.it

For more info visit: ASG Superconductors Columbus Mgb2

Thank you for your attention!