
IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.

HTS CABLE TECHNOLOGY – A CHANCE FOR ADDRESSING THE CHALLENGES OF ENERGY TRANSITION

Werner Prusseit THEVA Dünnschichttechnik GmbH

Virtual CCA 2021 11.10.2021

© THEVA Dünnschichttechnik GmbH 2021

THEVA

WHY HTS CABLES ?

The perspective of a grid operator

Our task:Reliable, uninterrupted power supplyNot our job:Making experiments in our grid

Why bother with HTS technology?

- Cool, disruptive technology
- Energy efficiency
 Only 6% grid losses 1.5% at HV
- Cooling is reliable
 No contraction
- Can transport lots of power
- HTS can be cheaper

No cooling even more

 (\mathbf{i})

We have proven solutions

Customer pays the bill

No incentive External urge necessary

The times they are changin'

Bob Dylan, 1963

CLIMATE CHANGE IS THE BIGGEST THREAT FOR MANKIND

No combustion of fossil fuels – nowhere!

Better get ready for it

The world is getting fully electric

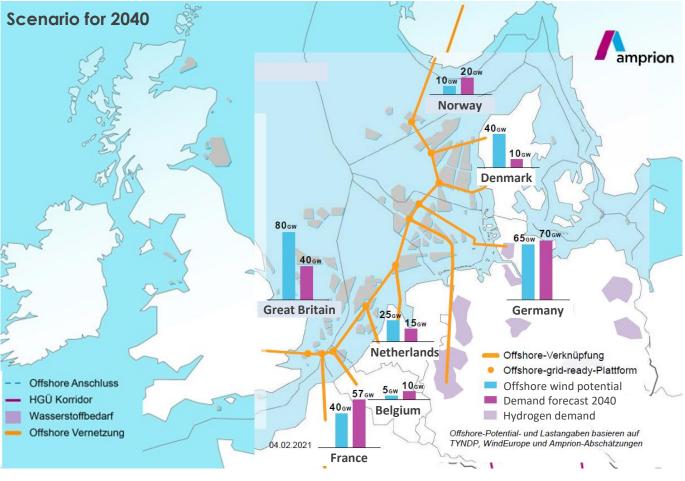
Protect your infrastructure

Make it resilient

against flooding, hurricanes, drought & fire, ice, overloads

© THEVA Dünnschichttechnik GmbH 2021

FACING EUROPEAN TRANSMISSION CHALLENGES


EUROBAR

European Offshore Grid

Sharing offshore wind and making it base load capable

- Trans-European Network DE: in 33 TWh; out 50.5 TWh (10%) Net export 2020: 17.5 TWh
- Integration of Power to Gas Hydrogen infrastructure
- Strengthening domestic transmission grid from coast to consumer

Amprion: major TSO in Europe © THEVA Dünnschichttechnik GmbH 2021

ENERGY TRANSITION IN GERMANY

THE DISTRIBUTION CHALLENGE – GETTING GIGAWATTS IN CONGESTED AREAS

Fossil fuel substituted by electric energy

- Mobility
- Heating
- Industrial processes

Increasing energy consumption

- Increasing city population
- Demographic change
- IT, communication, air-conditioning

Sottleneck existing distribution grids

- Aging infrastructure
- Design / capacity
- Losses \Rightarrow CO₂

Strengthening and renewal of grid infrastructur necessary

How Would a TSO Prefer to Transport Gigawatts ?

The standard solution – AC transmission in OHL

AC allows easy transformation between voltage levels from long range EHV to short range MV and LV

Overhead Lines (OHL)					
Pro	Con				
Cheapest and easiest solution	 High risk of damage (exposure) 				
 Accessibility 	No public acceptance				
 No capacitive reactive power P_X 	Long legal disputes & approval procedures				
 Long distances without compensation 					
Historically, OHL constitute 90+% of our transmission grid					
Today – practically no new OHL feasible Public urge					

INVISIBLE TRANSPORT AND DISTRIBUTION OF HIGH POWER?

AC cables	DC cables		
 Dominating in urban distribution (LV, MV, HV) High power transport: only few, short EHV intermediate connections (380 kV, < 25 km) 	 High power, long distance transport Submarine cables connecting countries/wind farms Germany: South-Link: 525 kV, 800 km 		
 Expensive (civil engineering) High capacitive reactive power (∝U²) Limited length w/o compensation (380 kV, 25 km) 	 No reactive power, no length limit Point to point connections – no grid Huge, expensive converter stations 		

Cables are used where space, public and environment don't allow OHLs

Long distance and submarine connections only by DC cables

9

UNIQUE SELLING PROPOSITIONS OF HTS CABLES

Current instead voltage

transport of high power at lower voltage level low reactive power, long length without compensation

- > High power density small footprint
- > No environmental impact

no warming, EM-emissions, interference **Public** acceptance

2 GVA power transport options				
Spec	HVAC-XLPE	HTS - AC	HVDC-XLPE	
Voltage (kV)	380	110	±525	EHV needs much space
Current (A)	1600	5,250	1900	
Max. length (km)	25	200+	no limit	
Cable system	2 × 3 = 6	2	2	
Width: OP/(Constr.) (m)	10 (25)	1 (5)	5 (10)	

What needs to be done?

- Proof of compactness: 500+ MW in Ø15 cm
- Demonstrate long (10+ km) distance cooling

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

© THEVA Dünnschichttechnik GmbH 2021

12

THEV/A

SUPERLINK PROJECT TEAM

SW//M	Stadtwerke Munich	Utility for 400 V – 400 kV urban infrastructure	
NKT	NKT Cables Group	HTS cable system manufacturer	
THE LINDE GROUP	Linde Group	Technical gases cryogenics and cryogenic systems	
THEVA	THEVA	HTS tape manufacturer project development	
Fachhochschule Südwestfalen University of Applied Sciences	Univ. of Appl. Science South Westfalia	High voltage and cable testing	
Karlsruhe Institute of Technology	Karlsruhe Institute of Technology	Power systems electromagnetic and thermal modelling	


© THEVA Dünnschichttechnik GmbH 2021

URGING PROBLEM OF THE CITY ULITLITY

Rebuilding the distribution grid and establish a 500 MVA connection across the city

- Necessary change in cable technology Non-availability of gas-pressure cables
- Strong renewal pressure: 80+ % cables installed before 1980 Enormous volume >90 HV cable sections
- Connection of gas power station in the south to transmission grid (NW) across the city
- Avoidance of new 400/110 kV main substation (space, cost)

ALTERNATIVE SOLUTIONS

Transport of 500 MVA over 12 km

400 kV XLPE cable system

400 kV overhead line

E.g. tunnel solution, as in Berlin, London etc.

Same for GIL

Not feasible in the city

Multiple 110 kV XLPE cable systems

5 systems & routes Limited bending radii

Soil warming (spacing)

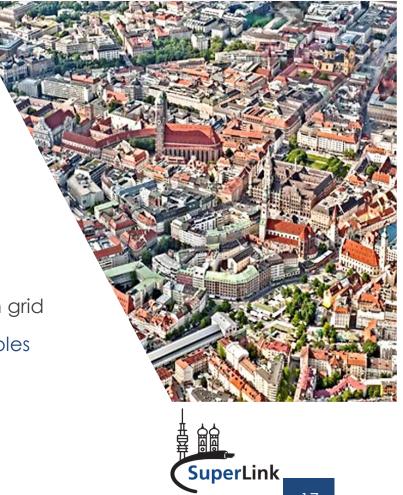
110 kV HTS cable

ALTERNATIVE SOLUTIONS - ASSESSMENT

Transport of 500 MVA across 12 km in densely populated area

Criteria	400 kV XLPE	400 kV OHL	Multiple 110 kV	110 KV HTS
Minimum space				\bigcirc
Public acceptance			<u></u>	\bigcirc
Economic feasibility		<u> </u>		<u></u>
Technical maturity			\bigcirc	<u> </u>
City grid integration				\bigcirc
Power density				\bigcirc
Low loss		<u></u>		$\overline{}$

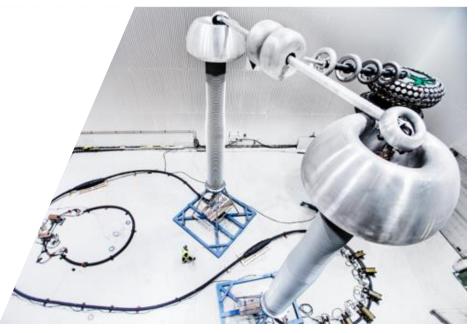
The HTS option is very attractive – but needs development


SW//M CITY UTILITY'S CONCLUSION

HTS appears as unique & attractive solution

The 110 kV HTS cable solution ...

- is the economically and technically most reasonable solution for the future urban power supply
- has minimum impact on environment, urban life and traffic
- minimizes obstruction of residents during construction and operation
- provides flexibility even at increasing consumption of electrical power
- improves the energy efficiency and carbon footprint of the distribution grid
- is an option for smart conversion of the city grid saving 1/3 of all HV cables

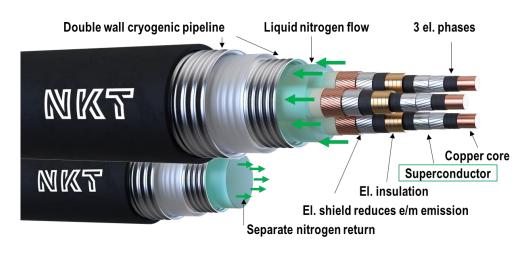


SUPERLINK CABLE PROJECT GOALS

Setting the stage for a long, high-power HTS cable connection in Munich

Development goals

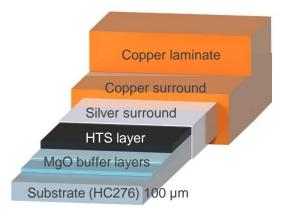
- Design concept for a 12+ km long 110 kV cable line with all components and auxiliaries
- Capacity 500+ MVA in a compact, single cable
- Closed cooling cycle & distributed cooling over 12+ km
- Development and type testing of all components: cable, joints, terminals, efficient cooling substations
- In-grid testing of a 150 m long demo cable in substation
- Project term: 10/2020 3/2023



THEVA

SUPERLINK CABLE DESIGN

Cable design


- 3 phases in one cryostat
- Superconducting phases and screens
- 110 kV, 500 MVA, 2.6 kA_{rms}
- Fault current resilient 40 kA for 1 s
- Black start capability
- Separate LN return pipe (single, one-way cable)

HTS conductor

Main manufacturing focus:

- Cost efficient production
- High yield processes (e.g. Laser-slitting)

- Robust, thick Cu-laminated conductor
- Width 3 mm to reduce AC-losses

© THEVA Dünnschichttechnik GmbH 2021

DISTRIBUTED COOLING SYSTEM

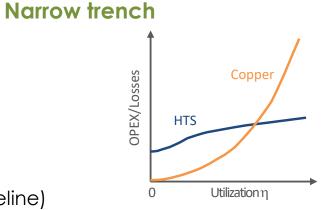
IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.

© THEVA Dünnschichttechnik GmbH 2021

INDICATIONS FOR FAVOURABLE ECONOMICS – A CHECK LIST

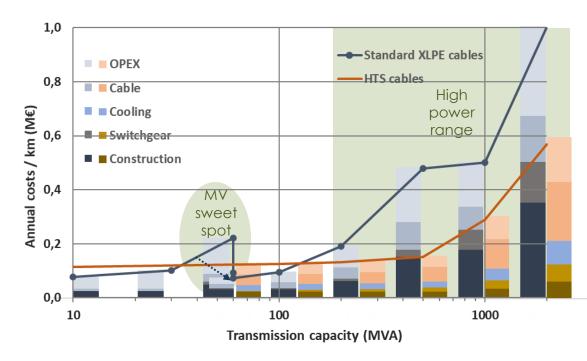
Scarce underground space, reduced civil engineering

Urban retrofit (substitute gas pressure- or oil cables) Obstacles, crossings, difficult terrain



- High current, heavy duty application
- High load factor and utilization (η > 50%)
 Moderate load profile / fluctuations (dη/dt)

- Additional monetary benefits (e.g. cold gas, LN-pipeline)
 - o Economic benefits (minimally invasive)
 - Resource efficiency (materials, construction, "ecological footprint")
 - **Public acceptance** ("not in my backyard")



COST ASSESSMENT - COMPARING STANDARD XLPE TO HTS CABLES

Higher HTS cable costs need to be balanced by other savings

Busi

- Business cases for HTS cables
- Higher HTS cable costs over-compensated by lower costs of civil engineering, switchgear etc.
- OPEX lower, when average utilization > 50%
- Medium voltage sweet spot at 40-80 MVA if HV level can be avoided (smaller towns); very HTS cost sensitiv

High power transport 200+ MVA

HTS competitive to multiple HV- or EHV-cables; smaller HTS cost sensitivity

SUMMARY

HTS cables are a new tool to handle high power distribution in densely populated areas

- > GVA distribution into metropolitan areas (e.g. Rhine-Ruhr area)
- > Flexible cables fitting in city ducts with high current carrying capacity
- Reduced reactive power allows distances 100+ km without compensation
- Submarine cables and interconnects (under investigation)

The SuperLink project is a blueprint for a high power transmission cable

- > High power in compact cable at distribution voltage level (instead of EHV)
- Distributed cooling over long distance

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.

WHY HTS CABLES ?

Why bother with HTS technology ?

Because you will need it !

© THEVA Dünnschichttechnik GmbH 2021

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation TC-1 was given at the virtual CCA 2021, October 11-15, 2021.

