

Advances in Nanoscale Analysis of Hf doped Nb₃Sn wires using Atom Probe Tomography

Laura Wheatley¹, Shreyas Balachandran², Chiara Tarantini², Peter Lee², David Larbalestier², Paul Bagot¹, Susannah Speller¹, Michael Moody¹ and Chris Grovenor¹

¹ Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK

²Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031

E. Paul Dirac Dr., Tallahassee, FL 32310, USA

Research at University of Oxford is supported by EPSRC, the main Research Council for Physical Sciences in the UK

Research at FSU is supported by the US Department of Energy, Office of Science, and Office of High Energy Physics under Award Number DE-SC0012083, and was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreements NSF- DMR-1644779 and by the State of Florida

Requirement: High Performance Nb₃Sn for FCC

- Operational J_c in Nb₃Sn superconductor: 1500 Amm⁻² and RRR > 150 at 16 T (4.2 K)
- Needs radical improvements in performance of Nb₃Sn filaments

Schematic of the FCC www.home.cern/science/accelerators/future-circular-collider

Optimising the Superconducting Properties

 For high J_c at 16 T the pinning force function will require both grain boundary and secondary point pinning

$$F_P = A_{GB} \left(\frac{H}{H_{IRR}}\right)^{0.5} \left(1 - \frac{H}{H_{IRR}}\right)^2 + A_{PD} \left(\frac{H}{H_{IRR}}\right) \left(1 - \frac{H}{H_{IRR}}\right)^2$$

- Grain boundaries and optimised point defects are on the scale of the coherence length (3-4 nm in Nb₃Sn)
- Nanostructural analysis is required to visualise grain boundaries, secondary phases and local chemistry changes on this scale

 $\frac{m}{n} \approx 2eV \left(\frac{t_{flight}}{L}\right)^2$

What is Atom Probe Tomography?

- 3-Dimensional characterisation technique
 - High spatial and chemical resolution
 - Sensitivity down to ppm

Hf

Additions for Point Defects

- Addition of Group IVB elements Zr and Hf to produce oxide nanoparticles [1,2]
- Ta known addition to increase the upper critical field
- Obvious shift to point pinning function seen in Hf doped sample

1.0 - (b) 3.01 K 4.2 K 6 K 0.8 8 K 10 K 12 K ,/F_{pMax} 9.0 Nb-Ta4 sample 14 K **GB** function – PD function 0.2 0.0 2 H/H_{Max} 1.0 - (b) 3.01 K 4.2 K - 6 K 0.8 8 K Nb-Ta4-Hf1 10 K р/F_{рМах} 90 12 K - 14 K sample **GB** function -··- PD function 0.2 0.0 2 H/H_{Max}

[1] S. Balachandran et al. 2019 Supercond. Sci. Technol. 32 044006
[2] X. Xu et al. 2020 Scripta Materialia 186 317-320.
[3] C.Tarantini et al .2019 Supercond. Sci. Technol. 32 124003

Sample studied in this work

BSD image of reacted wire

Are nanoparticles present in the Nb₃Sn region?

Atom Probe Tips from Nb₃Sn layer

Tip 3

20 nm

Nb₃Sn region: Location of oxides

- Cu is located at grain boundaries
- Additional isolated Cu regions are present within grains

Oxide Source

- <u>No oxygen</u> added to the alloy
- Are HfO₂ nanoparticles present within the Nb-Ta-Hf alloy before reaction?

Pre-heat treatment

Post-heat treatment

Pre-Heat Treatment Nb-Ta-Hf alloy: Hf distribution

Post Heat Treatment Nb-Ta-Hf alloy

Now the unreacted regions of metallic alloy do contain HfO₂ nanoparticles

Post-heat treatment

Oxygen Content

Pre-heat treatment Nb alloy (Oxygen at%)	Post-heat treatment Nb alloy (Oxygen at%)	Nb ₃ Sn (Oxygen at%)
2.59	3.66	0.49
1.95	3.61	0.87
3.83	1.36	0.16

Oxygen content in pre-heat and post-treatment Nb-Ta-Hf alloy is very similar, with far lower oxygen in the Nb₃Sn layer which is confined to purely oxide clusters.

We can also study the reaction process

Residual Nb₆Sn₅

- Nb₃Sn shown with the dark green surface
- The rest of the tip is Nb₆Sn₅

Nb₃Sn

Nb₆Sn

• HfO₂ clusters seen in Nb₆Sn₅ as well as the Nb₆Sn₅

TEM image of Nb₃Sn-Nb₆Sn₅

> S. Balachandran et al. 2019 Supercond. Sci. Technol. 32 044006

Cu preferentially partitioned into the Nb₆Sn₅

C. Segal, et al. IOP Conference Series:

Materials Science and Engineering. Vol. 279. No. 1. IOP Publishing, 2017.

Next Steps: Comparison of Oxygen content to a Commercial Alloy

Pre-heat treated Monofilament Nb-4Ta-1Hf alloy (at%)	Commercial Nb-4Ta-1Hf alloy (at%)
2.59	2.17
1.95	1.09
3.83	1.04

2 µm

BSD image of a commercial alloy

- Evidence of larger HfO₂ precipitates in the commercial alloy
- Next step is to compare oxygen content across alloys using EPMA

Conclusion

- HfO₂ nanoparticles are found in the post-heat treatment Nb-Ta-Hf alloy, the Nb₆Sn₅ and the Nb₃Sn layer
- The oxygen was originally dissolved in the Nb-Ta-Hf alloy, leading to the formation of these oxides during heat treatment
- Nanoscale Cu islands are also present in the Nb₃Sn (and may contribute to pinning)
- Nb₆Sn₅ contains a larger concentration of Cu than the Nb₃Sn that forms from it (approx. 2at%)
- Different Nb-Ta-Hf alloy compositions can be compared to determine the best starting material for producing optimal superconducting properties

