

International Workshop on Coated Conductors for Applications UH Hilton Hotel & Rockwell Pavilion – University of Houston | APRIL 3-6, 2023

Multilayer BZO/YBCO thick films for high I_c in high fields

Judy Wu University of Kansas, USA jwu@ku.edu

Acknowledgement of funding from NSF and AFOSR

Acknowledgement

Mohan Panth, Victor Ogunjimi, Bibek Gautam, Shihong Chen and Jack Shi

University of Kansas, USA

Mary Ann Sebastian and Timothy J. Haugan U.S. Air Force Research Laboratory, US

Di Zhang, Yifan Zhang, Jijie Huang, Jie Jian and Haiyan Wang Purdue University, USA

Outline

Effect of strain on APC/REBCO nanocomposites

- Role of strain field in controlling APC morphology, dimension, orientation, etc
- Effect of APC/HTS interface on APC pinning efficiency

Development of multilayer (ML) approach to dynamically adjust APC/HTS interface strain

- Improving APC/YBCO interface
- Enhancing APC pinning efficiency
- Large Ic in ML films

Summary and future perspectives of APC/HTS nanocomposites for applications

APCs needed in REBCO

axis

ab-plane

Wiley-VCH, (2004); Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Vortices in hightemperaturesuperconductors Rev. Mod. Phys. 66 1125

BaZrO₃ (BZO) 1D APCs

Other 1D APCs

- C-axis aligned BZO 1D APCs provide strong correlated pining shown as a J_c peak at H//c-axis
- Accommodation field H*~n*Φ₀ could be estimated from 1D APC areal density n*

Strain Mediated Growth

Strain mediated ordering in semiconducting quantum dots

-Preferential growth to minimize strain energy

-Dynamically, gradient of strain-mediated surface chemical potential produces diffusion and a driving force for migration of incoming adatoms -The controlling strain is from the mismatch between matrix and QDs.

APC Formation – Interfacial strain mediated growth

Similar alignment mechanism

The controlling strain is from the mismatch between the YBCO and BZO and is anisotropic—BZO cylinder shape and aligned
YBCO matrix is under tensile strain—lower T_c, low-field J_c, high resistivity

Strain field initiated from 1D APC/RE-123 interface plays a critical role in self-assembly of the 1D-APCs

- Shi and Wu, Philosophic Magazine 92, 2911 (2012); 92, 4205 (2012);
- Wu and Shi, SUST 30, 103002 (2017) in SUST Special Issue on Artificial Pinning Centers
- Wu, Gautam and Ogunjimi, in *Superconductivity*, ed. by Kosmas Prassides, Chiara Tarantini, Anna Palau, Petre Badica, Alok K Jha, Tamio Endo and Paulo Mele, Springer (2020). Page 29-52.

The bad news of the strain field Strain field initiated from 1D APC/RE-123 interface due to a large BZO/YBCO lattice mismatch of ~ 7.7%

BZO 1D-APC/YBCO interface is defective

- A defective, oxygendeficient YBCO column around the BZO/YBCO interface
- This raises a question on the impact on the pinning efficiency of BZO 1D-APCs

T. Horide et al. ACS Nano **11**, 1780 (2017).

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

Strain field is a double-edge sword in APC/HTS nanocomposites

Good: It plays a critical role in strain-mediated APC growth and determines morphology, dimension, concentration, orientation, etc

Bad: It may lead to defective APC/HTS interface that could reduce the pinning efficiency of APCs
(1) B_{max}<B* -- a substantial number of 1D APCs generated are not contributing to pinning
(2) low F_p since it is proportional to the sharpness of the

APC/HTS interface

Multilayer approach: dynamic control of the BZO/YBCO interface

Step 1: deposition of BZO/YBCO

Step 2: deposition of Ca_{0.3}Y_{0.7}Ba₂Cu₃O₇

Step 3: deposition of BZO/YBCO

- BZO 1D-APCs form similarly to the case single-layer BZO/YBCO nanocomposite films
 - **Tensile strained** BZO/YBCO interface due to 7.7% lattice mismatch

Cu substitution by 30% larger Ca ions favored energetically by the tensile strained BZO/YBCO interface, leading to enlarged YBCO c-axis and reduced lattice mismatch at the BZO/YBCO interface

- 2-8% of BZO/YBCO with layer thickness of 50-250 nm tested for Ca diffusion
- The ML deposition can be repeated for thick films

Ogunjimi et al, SUST 34, 104002 (2021); Wu, et al, SUST **35**, 034001 (2022)

STEM/EDS characterization

6% BZO/YBCO single-layer (SL) nanocomposite film

6% BZO/YBCO multilayer (ML) nanocomposite film

Ogunjimi et al, SUST 34, 104002 (2021); Wu, et al, SUST **35**, 034001 (2022)

- BZO 1D-APCs have comparable diameters and areal concentrations in SL and ML samples
- Minor Ca diffusion from CaY-123 spacers to YBCO during PLD growth is clearly visible from STEM/EDS elemental maps

2% BZO/YBCO $T_c \sim 88.5 \text{ K} \text{ (SL or pristine))}$ $T_c \sim 87.5 \text{ K} \text{ (ML or repaired)}$

6% BZO/YBCO $T_c \sim 86.9 \text{ K} (SL \text{ or pristine})$ $T_c \sim 84.5 \text{ K} (ML \text{ or repaired})$

- Despite slightly lower T_c values, enhanced J_c (B) was observed in ML samples with a coherent BZO/YBCO interface
- At 65 K, J_c is enhanced over the entire B field range up to 9.0 T

Ogunjimi et al, SUST 34, 104002 (2021); Wu, et al, SUST **35**, 034001 (2022): Wu at al, IEEE Trans. Appl. Supercond. (2023)

2% BZO/YBCO $T_c \sim 88.5 \text{ K} \text{ (SL or pristine))}$ $T_c \sim 87.5 \text{ K} \text{ (ML or repaired)}$

6% BZO/YBCO $T_c \sim 86.9 \text{ K} \text{ (SL or pristine)}$ $T_c \sim 84.5 \text{ K} \text{ (ML or repaired)}$

- At 65 K, the peak F_{pmax}~157 GN/m³ in 6% ML BZO/YBCO is 4.4 times of that in the SL 6% BZO/YBCO sample
- B_{max} is increased by 60% to 8.0 T in 6% ML BZO/YBCO, but there is still a room for further improvement considering B* ~ 9.2 T

Thick ML films at low temperatures

- At 65 K, 6% BZO/YBCO ML samples with thickness of 150-750 nm have comparable Jc values.
- At low temperature, 750 nm thick ML film outperforms thinner counterparts

Future perspectives: emphasize practical needs

- Exciting progress has been made in research and development of APCs, particularly through a transition from empirical try-and-error to APClandscape-by-design
- The future research on APC/REBCO nanocomposites needs to consider other application requirements such as:
- mechanical strength,
- □ radiation sustainability,
- Throughputs and cost