



Chubu University



### Coated Conductor R&D at Shanghai Superconductor Technology and discussion for fusion application

### Y. Yamada\*

### J-M Zhu and B. Song

Shanghai Superconductor Technology Co., Ltd., China \*Chubu University, Japan

and

HTS-CF R&D Committee in Japan, CSSJ(Cryogenics and Superconductivity Society of Japan)

### **IBAD+PLD** history



#### Continuous Long YBCO wire Production Line in Japan (2005, ISTEC)





- Current status of SST and HTS activity in China
- Technology at Shanghai Superconductor Technology (SST)
  - Mass production
  - R&D
- Activity of HTS-CF group in CSSJ Japan
  - Important R&D for HTS-Fusion system
- Conclusion



### Current SST Status in China Visit & Survey in March 12 to 26, 2023



上海超导

### Plant #1 (Upgrading of existing plant)

Zhangjiang Hi-tech Park, Shanghai





km/yr

Plant #2 (New) Kangqiao Industrial Park, Shanghai



3500 3000 2880 3000 5 2500 2000 1640 1500 1000 700 500 500 1000 1000 1000 100 100 0 2023 2025 2024 2022 2026 Plant #1 Plant #2 Plant #3 -O-Total Capacity

**SST Production Capacity Outlook** 

#### Plant #3 (New)

Aviation Harbour Demonstration Park, Hefei



3 years Expansion Bants

3000 km/yr Capacity



#### New Plant #2





IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

上海超导

## Map: SST Plant#2



Jinda (new investor) (the largest special magnet wire producer in China) is investing much to HTS and SST with promising markets.

Production expansion
 New factories #2,3 are being
 constructed.

Employee 70→120+

New Plant #2



# R&D

### Laser Slitting with less cracks and better fatigue property



### 1mm Thin Tape (mechanical slit)

by prof. Inoue of FIT





### Effect of twist (torsion angle) on critical current, *I*<sub>c</sub> in REBCO CCs



| HTS                   | REBCO CC (SST)   |
|-----------------------|------------------|
| stabilizing layer     | Ag + Cu coating  |
| current lead distance | 100mm            |
| voltage tap distance  | 55 <b>~</b> 60mm |
| temperature           | 77K (Liquid N)   |





| - | Slitting<br>method | Tape<br>width | ID |  |
|---|--------------------|---------------|----|--|
|   | Mechanical         | 4mm           | #1 |  |
|   |                    | 2mm           | #2 |  |
|   | Laser              | 4mm           | #3 |  |

### by prof. Inoue of FIT

#### $\mathcal{O}$

#### **Twisting Test** Ic starts to degrade at 280, 200 degree for 2, 4mm wide tapes.





Torsion angle [deg. ]



### **For HTS Fusion Possibility**

#### CSSJ (Cryogenics and Superconductivity Society of Japan\*) HTS Compact Fusion R&D committee https://www.csj.or.jp/en/index.html



| Nomo                    | Affiliation                                                                 |                    |                                                 |                              |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------|--------------------|-------------------------------------------------|------------------------------|--|--|--|--|
| Name                    | Anniation                                                                   |                    | Field                                           |                              |  |  |  |  |
| Yutaka Yamada           | Chubu University                                                            | Chair              | Materials, Conductor                            |                              |  |  |  |  |
| Hiroshi Ueda            | Okayama<br>University                                                       | Managing secretary | Stability, Loss                                 |                              |  |  |  |  |
| In ABC order of Surname |                                                                             |                    |                                                 |                              |  |  |  |  |
| Satoshi Awaji           | Tohoku university                                                           | member             | High-field ref. cooled magnet                   | Koupoint                     |  |  |  |  |
| Masayoshi Inoue         | FIT                                                                         | member             | Conductor, Ic                                   | /Young and next              |  |  |  |  |
| Hiroshi Miyazaki        | Kyushu University                                                           | member             | Magnet (ex Toshiba)                             | generation.                  |  |  |  |  |
| Hiroyuki<br>Murakami    | <b>QST</b> the National<br>Institutes for Quantum<br>Science and Technology | member             | Magnet,<br>JT60SA (LTS but compact fusion syste | /System experts<br>included. |  |  |  |  |
| Arata Nishimura         | NIFS                                                                        | member             | System, Materials, LHD                          |                              |  |  |  |  |
| So Noguchi              | Hokkaido<br>University                                                      | member             | Magnet, Quench                                  | iet, Quench                  |  |  |  |  |
| Suwa Tomone             | QST                                                                         | member             | Magnet, ITER                                    |                              |  |  |  |  |
| Tomonori<br>Watanabe    | Chubu Electric<br>Power Company                                             | member             | Power application, Magnet, Conducto             | or                           |  |  |  |  |

----New Members are now being accepted.

#### CSSJ (Cryogenics and Superconductivity Society of Japan) HTS Compact Fusion R&D committee members visited QST, JT60SA and discussed for how to use HTS.

HTS-CF Japan in CSSJ





- 2G-HTS business outlook :
- Now compact fusion is also a trigger for a big HTS industry.
- Also, many demonstration projects of power cable, FCL, high speed maglev train, magnets, are being conducted: Shanghai Cable 5km length planning.
- Commercial 2G-HTS tapes with low price are highly anticipated.
- Further of R&D should be progressed for HTS fusion: irradiation, thin, multifilamentary wire, strength, cooling-stability-quenching, AC loss
- Technological developments:
- Large volume production by IBAD + PLD, scope: annual production in 2025 > 3000 km/12mm (I<sub>c</sub>=150-200A);
- Advanced slitting method: laser slitting with less damage at the edges
- Basic R&D for fusion composite conductor: Thin tape: 1mm wide tapes, also 30 μm in thickness in progress. Twisting effect, AC loss,... will be discussed in more detail with our colleagues.





# END