

Coated Conductors and HTS Magnets for Compact Fusion

Yuhu Zhai

Princeton Plasma Physics Laboratory

PPPL Team T. Brown, J. Menard, M. Zarnstorff, P. Titus, C. Kessel (now with ORNL)

Collaboration Team D. van der Laan, Advanced Conductor Technologies, D. Larbalestier & D. Davis, FSU-ASC-NHMFL

Coated Conductor Application Workshop at University of Houston April 4-6, 2023

U.S. Strategic Reports Emphasize Fusion Pilot Plant

- Goal: Make 50-100 MW net electricity, extended to long pulses
- Road Map: Design in 2020s, Construct in 2030s and Operate in 2030s-2040s
- NAS Report: Bring Fusion to U.S. Grid -> 30 GW of additional generation

resources needed annually from '40 t0 '50 based on reference case analysis

- Establish scientific and technical basis for a fusion pilot plant by 2040s
- Next step test facilities (tokamaks and compact stellarators)
 - Establish mission need to close integration & magnet R&D gap(s)

PPPL design studies for low-A tokamaks/stellarators

- Establish scientific and technical basis for a fusion pilot plant by 2040s
 - Integrate self-driven current with high core confinement, pressure, heat flux
- Steady-state to reduce disruptions, cyclic fatigue and need for pulsed power systems to enhance reliability and more compact to reduce size & cost

First HTS magnet system was proposed in **ARIES AT** studies (Fusion Eng. Des., 2006)

Sustained high power-density (SHPD) tokamak A = 2–2.5

R=1-1.6m, HTS TF SHPD and EXhaust and Confinement Integration Tokamak Experiment (EXCITE)

FNSF & FPP A=2, R=3m HTS TF / P_{net} = 50-100 MWe

2021-2022

ST Advanced Reactor (STAR) Fusion Power Plant A=2–2.2, R=4–4.5m, HTS TF P_{net} = 200-500MWe

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

Two Different Magnetic Configurations

Plasma disruption drives engineering design!

CICCs, no Coated Co High curre Different s

HTS Conductors	HTS Magnets
Ideal - isotropic, low cost, low loss, high Jc & high strength, rad. resistant, flexible design & easy integrate into coil design	Conduction or 10-20 K gas cooled, 16-20 T on coils, high winding pack J _e
YBCO - anisotropic, high cost, large losses, high strength, screening current; high risk CICCs, no heat treatment	High field, compact steady state TF coils, >10 kA cables, quench and stress management
Coated Conductor application - High current cables Different specs for diff. coils	High current density, high field OH coils for plasma startups (>kA/s or 1-3 T/s ramp rate)

No disruptions & driven plasma currents & Typ. static B field

MUSE, PPPL

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023. Fusion Energy Systems Studies - Fusion Nuclear Science Facility

- Missions established in FNSF study for any intermediate device (ITER -> Power Plant)
 - Advance fusion neutron exposure of all core components toward the FPP level
 - Routinely operate plasma for very long • durations (hours, days to weeks)
- Advance enabling technologies
 - Develop power plant relevant subsystems including high field magnet system

Total Stored energy 2x of ITER per TF coil Total centering & vertical forces are 2~2.5x of ITER per TF IB leg

Integrated Physics, Engineering & Costing Models for Magnets 🌖

Design Flow		Core Physics Creating design
Technical philosophies and discipline scope	Independent physics analysis Existing tools Tools to develop Early parametrics Literature search	and assessing it at the same time Edge Plasma
Design/Simulation		Materials
Tools Assessment	Begin Systems Analysis	Blanket design Integrated
		Divertor design Design
FPP description - goals	Independent engr analysis	Internal Structures
Plasma configuration(s)	Tools to develop	Remote Maintenance
Flasma configuration(s)	Early parametrics	Tritium/safety
	Literature search	RF, H/CD design
Institution		Vacuum pumping
identification	Critical physics and	·····
Skii-sets/topics/tools	engineering gaps	C. Kessel,
Integrated Design for Euclor Nuclear Science Facility		Systems Configuration ORNL
Integrated Design for Fusion Nuclear Science Facility		(BoP, costing, etc.)

Fusion Nuclear Science Facility Coil System Design

Zhai et al., Conceptual design of HTS magnets for FNSF, *Fusion Eng. Des.*, 168 (2021) 112611 (here)

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

7

Engineering Critical Current Density vs. Applied Field

Coated conductor with attractive properties for **Fusion Nuclear** Science Facility magnet design and optimization!

Relevant Conductor Critical Current Performance

′<u>9</u>

B (T)

Fusion Nuclear Science Facility (FNSF) TF Magnet Conductors 🌖

10

6-around-1 corc[®] CICC with performance up to >60 kA at (4.2K, 20T)

CORC [®] cable	/ (4.2 K) 70 %	Diameter (mm)
HF - 50 tape 50 micron	305 A/tape - 20 T	8
MF - 38 tapes	406 A/tape - 14 T	7.2
LF - 24 tapes	635 A/ tape - 8 T	6.375

ReBCO tape (superpower M4-396) performance - min I_c (6T) = 800 A

lc (77K, s.f.) = 137.14 A lc (4.2K, 20T) = 305 A

CORC[®] cable performance I_{op} (70% I_c) = 10.67 kA @ (4.2K, 20T)

CORC[®] current density > 150 A/mm²

FNSF TF WP, 4.2 K performance with force flow LHe cooling IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

Fusion Nuclear Science Facility TF Design Parameters

	ITER	FNSF
Conductor	Nb ₃ Sn CICC	6-around-1 CICC
Major Radius (m)	6.2	4.8
Minor Radius (m)	2	1.2
Plasma Current (MA)	15	8.0
Plasma Center B (T)	5.3	9.3
TF Operating Current (kA)	68	64
TF Max B Field (T)	11.8	20.3
WP Je (A/mm ²)	17	39
TF A-Turns (MA)	9.1	14.0
# of Turns	134	218
# of TF Coils	18	16
Fusion Power (MW)	500	450

Total Stored energy 2x of ITER / TF coil Total centering & vertical forces are 2~2.5x of ITER per TF IB leg Inductance per TF coil drops to 2.5 H if 6-around-1 CICC is used

	ITER	FNSF
TF WP IB Radius (m)	2.78	2.2
TF WP outer radius (m)	10.75	10.5
Centering force per IB leg (MN/m)	54	142-153
VSF per half coil (MN)	205	488-530
VSF per inboard leg (MN)	103	244-265
Length of Coil Centerline (m)	34.1	33.1
Winding Pack volume (m ³)	12.4	11
Inductance per Coil (H)	1.0	2.5
Total Stored Energy (GJ)	41	80

Parameter per TF	Parameter per TF Coil ITER	FNSF	
Con		Single CORC	6-around-1
Stored Energy (GJ)	2.3	3.5	5.0
Inductance (H)	1.0	61.2	2.5

TF Conductor design for Fusion Nuclear Science Facility

TF Coil Design - 6-around-1 CORC[®] CICC with conductor grading

- 36 mm square conductor (5 mm corner radius)
- Adjusted CORC cable dimension from high to low field regions

6-around-1 CORC[®] fits into TF winding pack with **218** turns with 2 mm turn insulation

50 tapes

38 tapes

24 tapes

Conductor grading based on field distribution in inboard leg winding pack

Zhai et al., Conceptual design of HTS magnets for FNSF, Fusion Eng. Des., 168 (2021) 112611 (here)

TF-CS Magnet System for Fusion Nuclear Science Facility

14

24.4

20

m

density norm (T)

- Magnet system is an integral part of reactor design
 - Equilibrium scenarios / plasma operations
- In-board radial build & engineering design analysis
 - TF-CS structural interaction (bucked or wedged)

Integration Challenges for Inboard TF and CS coil System

15

CS-PF coil system for Fusion Nuclear Science Facility (FNSF)

Coil parameters for spherical tokamak design studies $\overline{\mathfrak{O}}$

17

Challenge in-board radial build

Parameters	<u>SHPD</u>
Major radius (m)	1.2
Minor radius (m)	0.6
Plasma current (MA)	4.5
Plasma center B (T)	5.5
TF current / coil (MA)	3.6
J _{wp} (A/mm²)	80
TF coil B _{max} (T)	13
No. of TF coils	10

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

CORC® Solenoid Model Coil for Compact Tokamak

 HTS solenoids for plasma startups - fast ramping (kA/s), high field & high winding pack current density

Cabled coated conductor OH solenoid to decouple TF inner legs from OH solenoid NSTXU, SHPD/FPP

HTS cable test program to validate ST-FPP CS design

Winding at ACT (DOE SBIR)

- Mature design concept and address critical issues by subscale coil testing
- Test coils in a unique large bore magnet at ASC-NHMFL to validate design

2 layer CORC[®] model coil

No degradation after fast ramping on cabled model coil static test (PPPL-ACT-NHMFL)

Stable behavior at 4 K self-field, kA/s ramp rate

HTS cable test program to validate ST-FPP CS design 🗧

 No signs of degradation from the high field low-cycle fatigue of CORC insert solenoid tested with SHPD-FPP relevant operating parameters (up to 5 kA/s)

Model coil has ~40% diameter of a central solenoid needed for SHPD - tested 1-3 T/s ramp rates, 12 T (higher than the ITER CS)

High field low-cycle fatigue testing of HTS insert solenoid with ST-FPP parameters, Davis <u>ASC'22</u>

20

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

Summary

- 21
- Exploring reliable coated conductor & cable options is vital
- Leverage R&D capabilities in high field magnet and fusion to de-risk fusion pilot plants; differences in requirements
- Integration challenges vs. CS cyclic fatigue for pulsed machine operations to close R&D gaps
- Coated conductor for a broad range Fusion Pilot Plant configs.
 - R&D on design, testing, prototyping subscale solenoids
 - Test program to validate cables & CICCs for FPP relevant coils