Magneto Encephalo Graphy

Multichannel on-scalp MEG based on high-T_c SQUID magnetometers Superconducting Quantum Interference Devices

Dag Winkler¹

Justin F. Schneiderman,^{2,3} Alexei Kalabukhov,^{1,5} Maxim L. Chukharkin,^{1,4} Minshu Xie,¹ Silvia Ruffieux,¹ Christoph Pfeiffer, Thilo Bauch,¹ Edoardo Trabaldo¹

¹ Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden
² MedTech West

³ Institute of Neuroscience and Physiology , SA/GU, Gothenburg, Sweden

 ⁴ Department of Physics, Moscow State University, Russia
 ⁵ Skobeltsyn Institute of Nuclear Physics, Moscow State Univ., Moscow, Russia

Outline

- Introduction
 - Magnetoencephalography (MEG) and focal MEG
 - High-T_c SQUIDs
 - Why high-T_c MEG
- MEG Benchmarking a single channel high- T_c MEG against a low- T_c ELEKTA MEG
 - Benchmarking experiments with phantoms
 - Benchmarking and protocol for focal MEG on human subjects
- 7-channel high-T_c MEG system (KAW NeuroSQUID project)
 - Direct feedback injection to minimize crosstalk
 - Preliminary measurements
 - Flux transformers
 - High-T_c nanoSQUIDs
 - Single-layer device
 - Flip-chip device
- Conclusion

Outline

- Introduction
 - Magnetoencephalography (MEG) and focal MEG
 - High-T_c SQUIDs
 - Why high-T_c MEG
- MEG Benchmarking a single channel high- T_c MEG against a low- T_c ELEKTA MEG
 - Benchmarking experiments with phantoms
 - Benchmarking and protocol for focal MEG on human subjects
- 7-channel high-T_c MEG system (KAW NeuroSQUID project)
 - Direct feedback injection to minimize crosstalk
 - Flux transformers
 - Preliminary measurements
 - High-T_c nanoSQUIDs
 - Single-layer device
 - Flip-chip device
- Conclusion

The human brain

- Most complex organ known
 - ~10¹¹ neurons and ~10¹⁵ synapses
 - The number of combinations exceeds the number of particles in the universe!

Cognition and consciousness

- Understanding the brain
- Philosophical questions

Brain disorders a major burden for the society

- Human suffering

*) Olesen et al., 2012

How to interrogate the brain

EEG: Electro- encephalography IEEG: Invasive Electroencephalography MEG: Magnetoencephalography MRS: Magnetic Resonance Spectroscopy

SAGE-Hindawi Access to Research International Journal of Alzheimer's Disease Volume 2011, Article ID 280289, 10 pages doi:10.4061/2011/280289 fMRI: functional MRI SPECT: Single Photon Emission Cranial Tomography PET: Positron Emission Tomography

Benefits of MEG:

The Brain

Magneto- and electroencephalography (MEG/EEG) measuring electric brain activity

A single neuron: *B* ~ 0.01 fT

10 000 synchronous and parallel neurons: B ~100 fT

Currents in active neurons...

... give rise to small electric voltages and weak magnetic fields on the surface of the head

EEG = measuring the voltages on the scalp

MEG = measuring the magnetic fields

Applications of MEG

- Clinical use
 - Epilepsy diagnostics
 - Localization of eloquent brain regions before resections
- Clinical research (e.g.)
 - Predictive diagnostics of Alzheimer's disease
 - Personalized stroke rehabilitation
 - Assessing brain trauma
- Neuroscientific research

Mäkelä, Paetau & Parkkonen, SUST 2016

Current MEG system's issue: Sensors are far from the brain!

If the sensors could be on the scalp...

Distance to brain surface would reduce to less than half in

Courtesy by Lauri Parkkonen

Why on-scalp MEG?

- Closer to the source
 - Larger signals
 - Can possibly get the same SNR with less sensitive sensors
 - Higher spatial resolution
 - Higher information capacity
 - Resolve more complicated sources?
- Avoid LHe (finite resource, ~500 kSEK/yr)
 - Can use
 - High-T_c SQUIDs at LN2 or
 - (OPMs heated above RT)
 - Simpler cryogenics for high-T_c
 - Flexible arrays
 - Cheaper systems

Focal MEG sensors in our case: HTS dc-SQUIDS based on bicrystal junctions

Weak links: bicrystal substrate \rightarrow grain boundary \rightarrow epitaxial YBCO film \rightarrow microbridges crossing the grain boudary

D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990)

High-T_c SQUID magnetometers for MEG in an ILK dewar

Graduate student & SQUID & FFT

Graduate student & SQUID & FFT

EEG recordings from 1930s

MEGMAI

Alpha and theta bands...

Two-channel recordings: visual (O2) and sensorimotor (C4) alpha

Öisjöen et al, High-Tc superconducting quantum interference device..., App. Phys. Lett. 2012, DOI:10.1063/1.3698152

Outline

- Introduction
 - Magnetoencephalography (MEG) and focal MEG
 - High-T_c SQUIDs
 - Why high-*T*_c MEG
- MEG Benchmarking a single channel high- T_c MEG against a low- T_c ELEKTA MEG
 - Benchmarking experiments with phantoms
 - Benchmarking and protocol for focal MEG on human subjects

- Flip-chip devices
- Conclusion

Work done in collaboration with NatMEG @ KI

Minshu Xie,¹ Justin F. Schneiderman,^{2,3} Alexei Kalabukhov,^{1,5} Maxim L. Chukharkin,^{1,4} Silvia Ruffieux,¹ Christoph Pfeiffer,¹ Bushra Riaz, ^{2,3} Daniel Lundqvist,⁶ Stephen Whitmarsh,⁶ Matti Hämäläinen,⁷ Veikko Jousmäki,⁸ Robert Oostenveld⁹, Dag Winkler¹

1) Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Gothenburg, Sweden

- 2) MedTech West
- 3) Institute of Neuroscience and Physiology , SA/GU, Gothenburg, Sweden
- 4) Department of Physics, Moscow State University, Russia
- 5) Skobeltsyn Institute of Nuclear Physics, Moscow State Univ., Moscow, Russia
- 6) Swedish National Facility for Magnetoencephalography (NatMEG), Karolinska Institutet (KI)
- 7) NatMEG, KI and A.A. Martinos Center for Biomedical Imaging, Mass. Gen. Hospital & Aalto Univ.
- 8) NatMEG, KI & Aalto University
- 9) NatMEG, KI & Radboud University

GÖTEBORGS UNIVERSITET

CHALMERS

MC-2

Benchmarking on phantoms (courtesy of Elekta)

Benchmarking on phantoms (courtesy of Elekta)

Results

Standoff distance: 3 mm for high- T_c and 20 mm for low- T_c Dipole 1 depth under the phantom shell: 24 mm Expected signal amplitude gain: ~3 times

M. Xie, et al., IEEE Trans. Appl. Supercond., vol. 25, pp. 1601905, 2015

Benchmarking on human subjects

Challenges:

A new benchmarking protocol is needed!

- The limited number of channels for new sensor technology
- Time consuming to map the full field topography
- Habituation and changes in the subject's alertness during measurement
- The location of sources is unknown inverse problem needs to be computed!
- To locate the source, full-head field distribution required

State-of-the-art vs. bicrystal grain boundary high-T_c MEG system

M. Xie, et al., *IEEE Trans. Appl. Supercond.*, vol. 25, pp. 1601905, 2015 M. Xie, et al., *IEEE Trans. Biomed. Eng.*, vol. 64, pp. 1270, 2017

Benchmarking protocol

Results on AEF & SEF

Auditory evoked field after ~479 averages and 1–60 Hz band pass filtering

Shallow source

Somatosensory evoked field after ~616 averages and 1–500 Hz band pass filtering More features due to close proximity? Worth further investigation with on-scalp MEG

M. Xie, et al., IEEE Trans. Biomed. Eng., vol. 64, pp. 1270, 2017

NatMEG

Benchmarking: one high-Tc SQUID vs KI NatMEG Elekta System

- Auditory evoked fields: deep sources, results as expected
- Somatosensory evoked fields: shallow sources, strange results

Outline

- Introduction
 - Magnetoencephalography (MEG) and focal MEG
 - High-T_c SQUIDs
 - Why high-*T*_c MEG
- MEG Benchmarking a single channel high- T_c MEG against a low- T_c ELEKTA MEG
 - Benchmarking experiments with phantoms
 - Benchmarking and protocol for focal MEG on human subjects
- 7-channel high-T_c MEG system (KAW NeuroSQUID project)
 - Direct feedback injection to minimize crosstalk
 - Preliminary measurements
 - Flux transformers
 - High-T_c nanoSQUIDs
 - Single-layer device
 - Flip-chip device
- Conclusion

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Invited presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan. Projekt: **"Nanoscale superconducting devices for a closer look at brain activity".** Beviljat anslag: 34 397 000 kronor under fem år

NeuroSQUID

Nanoscale superconducting devices for a closer look at brain activity

Vision: To make the most sensitive magnetometer capable of operation above 77 K by employing superconducting quantum effects at the nanoscale. Sensors based on this technology will lead to a paradigm shift in neuroimaging. World-leading competences and facilities will come together to explore the fundamental possibilities of this new approach.

34 397 000 kronor (~ 4 M\$ / ~460 000 000 JPY)

GÖTEBORGS UNIVERSITET

NeuroSQUID

Cryostat

- 0.9 L liquid nitrogen reservoir
- Vacuum + superinsulation
- Thin, concave plastic window
- Option to pump on nitrogen
- Minimum sensor-to-room temperature distance ≈ 1 mm
- **T**_{base} = 80 K (70 K with pumping)
- ΔT < 100 mK</p>
- $t_{hold} = 19 h (22 h with pumping)$

NeuroSQUID

Cryostat – outer part and inner guts

- Sapphire window on inner LN2 container
- 7 sapphire wedges on d.o. holding SQUIDs
 - Dense, hexagonal pattern (2 mm edge-to-edge)
 - Tilted towards center
- 3 x 3-channel electronics from Magnicon

CHALMERS

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Invited presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan.

Parts and pieces NeuroSQUID

NeuroSQUID

High-*T*_c **SQUID** magnetometer

- Single layer YBa₂Cu₃O_{7-x} (YBCO) thin film magnetometer with directly coupled pickup loop
- 10 × 10 mm² STO bicrystal substrate

CHALMERS

UNIVERSITY OF TECHNOLOGY

- 2 grain boundary Josephson junction dc SQUIDs per chip
- High I_cR_n product: 120 250 μV at 77 K
- Rounded gold edges to contact from the side

NeuroSQUID Criteria for feedback

- On-scalp MEG \rightarrow minimize standoff distance
- Flux-locked loop → high enough coupling strength
- Low noise
- Low crosstalk → densely packed

Paper: S. Ruffieux et al., Supercond. Sci. Technol. 30 (2017) 054006

 \square

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Invited presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan.

Crosstalk

NeuroSQUID

CHALMERS

NeuroSQUID

2 Channel phantom measurements

CHALMERS

UNIVERSITY OF TECHNOLOGY

NeuroSQUID

Preliminary measurements on alpha

- 5 (7) SQUIDs
- Alpha (8-12 Hz)
- Eyes open eyes closed
- Time-frequency spectra (using multitapers)
 - Average over 5 trials

NeuroSQUID

Preliminary measurements on alpha

NeuroSQUID

CHALMERS

UNIVERSITY OF TECHNOLOGY

Preliminary measurements – increase in alpha seen in channel 2 & 3

MC-2

NeuroSQUID

Flux transformers

- Increase effective area A_{eff}
- Multi-layer device

Flip-chip device

Flux transformers (for flip-chip) NeuroSQUID

CHALMERS

UNIVERSITY OF TECHNOLOGY

NeuroSQUID

Integrated flux transformer

- Single chip
- Increased coupling

CHALMERS

NeuroSQUID

Motivation: Previous work^{*} on high-*T*_c nano-SQUIDs

CHALMERS

UNIVERSITY OF TECHNOLOGY

- Low flux noise at 8 K \rightarrow what about at 77 K?
- Large 1/f noise \rightarrow what about under bias-reversal condition?
- Small SQUID loop size \rightarrow can it be used as a magnetometer?
- Scalable junction technology \rightarrow potential for multi-channel MEG?

*) R. Arpaia, et al., Appl. Phys. Lett., vol.104, 2014

NeuroSQUID

Three approaches for coupling

Approach I

CHALMERS

UNIVERSITY OF TECHNOLOGY

NeuroSQUID

Simulation toolbox for numerically calculating the inductances and coupling

- Software: AutoCAD and COMSOL Multiphysics
- Principle: Solving London and Maxwell Eqs with the concept of stream function

Minshu Xie: PhD thesis 2017

CHALMERS

UNIVERSITY OF TECHNOLOGY

CHALMERS

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Invited presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan.

NeuroSQUID Noise at 77 K without Au top layer

Expected field noise taking achieved effective area $A_{eff} \sim 0.1 \text{ mm}^2$: $S_{\phi}^{1/2} \sim 500 \text{ fT/Hz}^{1/2}$

For HTS MEG applications: $S_{\phi}^{1/2} < 50 \text{ fT/Hz}^{1/2}$ needed

→ SQUID electronics with lower input noise (Cryoton)

CHALMERS

CONCLUSIONS

We still have to struggle a bit to get further down the road...

хЗ

HTS vs. LTS MEG

Benchmarking has been made with phantoms and humans

- HTS MEG reveals strange theta at occipital region
 HTS MEG shows larger than expected signals for shallow sources
 - HTS MEG shows more complex signals

A 7-channel high-Tc SQUID-based MEG system is being built: Crosstalk between two channels caused by feedback has been studied Phantom and human subjects measured

System level benchmarking (source localization) to be carried out

Low-noise flux-transformers for

Flip-chip and possibly integrated devices

To improve the sensitivity of nanowire-based high-Tc SQUID:
Thicker washer in Ketchen-type coupling (coupling coeff. k: 0.05 → 0.7)
Integrated devices (smaller separation)

Projected sensitivity 10 fT/VHz for Ketchen-type coupling

The Chalmers SQUID group

Knut och Alice Wallenbergs Stiftelse

GÖTEBORGS UNIVERSITET

CHALMERS

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Invited presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan.

Thanks!