Coherent superconducting circuits and quantum information – 30 years' advancements

ISS 2017

12/15/2017, Tokyo

Jaw-Shen Tsai Tokyo University of Science/Riken

Superconducting Quantum Circuits – A Family Tree

Superconducting Quantum Circuits – A Family Tree

Feynman Lecture @ gakusyuin University, Tokyo (1984)

Superconducting qubit

- single non-degenerate *macroscopic ground state*
- elimination of low-energy excitations
- degrees of freedom reduce to two: phase & number

Superconductor	~ 1 meV
Qubit	~ 10 μeV

Quantum Superposition

Progress in Decoherence time for Josephson Qubits

Good enough for fault tolerance

Josephson junction Secondary Macroscopic Quantum effect Multi-energy state (cf. solitary BCS state)

Family of Quantum Information Processing

Gate Model

Superconducting system: IBM (50~100), Google (50), Intel (50~100), Rigetti (100), Microsoft (1000) etc

2D qubit array

One-way Model

Our proposal

3D control lines <u>Challenging I</u>

Current integration: 10 20 aubits We are trying to find a new, simpler, and different scalable architecture in superconducting circuits

1D Array of linear qubits

Coherent Quantum Phase Slip in Superconducting Wire

Astafiev et al, Nature 2012

Electrical Quantum Standards (triangle)

壱: 10⁰ $+: 10^{1}$ **百**: 10² **千**: 10³ **万**:10⁴ 憶:10⁸ 兆:1012 **京**: 10¹⁶ **垓**:10²⁰ 抒: 1024 穰:1028 溝: 10³² 澗: 1036 正: 10⁴⁰ 載:1044 極: $10^{48} \sim 2^{150}$

Thank you for your Attention