

30th International Symposium on Superconductivity

(Tokyo, 14th December 2017)

WB3-2-INV

Recent progress on the development of MgB₂ wires in Hitachi

Motomune kodama, Hiroshi Kotaki, Takaaki Suzuki, Hideki Tanaka, Ryuya Ando, and Takeshi Nakayama

Hitachi, Ltd. Research & Development Group

E-mail: motomune.kodama.yf@hitachi.com

Introduction

Potentials of MgB₂ wires

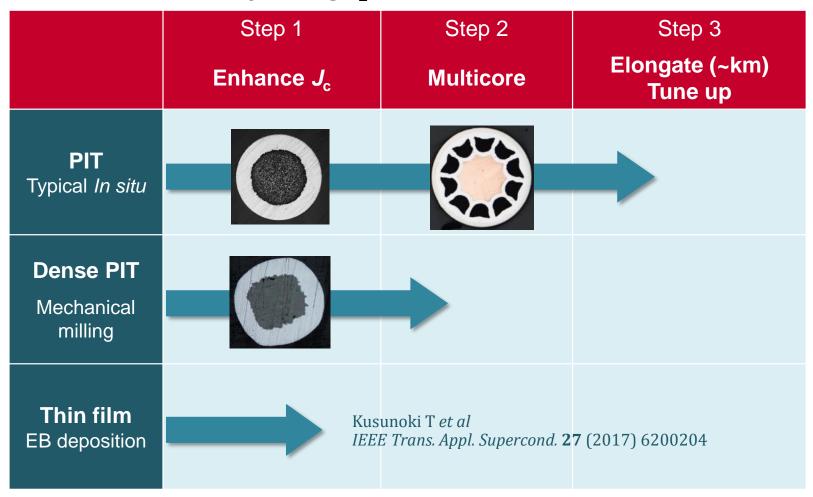
Promising for helium-free superconducting applications

- T_c is relatively high (~40 K)
- Manufacturing cost is low
- Round shape is producible

MgB₂ applications

- 0.5 T OpenSky MRI was launched by Paramed
- R & D phase: 1.5-3.0 T MRI, SMES, motor, generator, cable, and so on

MgB₂ wires


- In situ and ex situ wires are commercially available from Hyper Tech and Columbus, respectively
- R & D phase: internal Mg diffusion (IMD),
 high pressure treatment (CHPD, HIP),
 and so on

Introduction

Hitachi's R&D activity on MgB₂ wire

Contents

- 1. Tuning of in situ PIT process
- 2. Multicore in situ PIT wire
- 3. Next generation dense PIT wire

Contents

- 1. Tuning of in situ PIT process
- 2. Multi-core in situ PIT wire
- 3. Next generation dense PIT wire

1-1 Background Tuning of in situ PIT process

As factors to determine J_c of MgB₂, the following is especially important.

Electrical connectivity

Rowell J M Supercond. Sci. Technol. **16** (2003) R17 Yamamoto A et al Supercond. Sci. Technol. **20** (2007) 658

$$K = \Delta \rho_G / \Delta \rho$$
 $\Delta \rho = \rho(300 \text{ K}) - \rho(40 \text{ K})$
 $\Delta \rho_G = 6.32 \Omega \text{ cm}$

Effective cross-sectional area ratio for current

 J_c should be proportional to K

Intrinsic residual resistivity

Matsushita T et al Supercond. Sci. Technol. 21 (2008) 015008

$$\rho_0 = K \times \rho(40 \text{ K})$$

Degree of dirtiness as a superconductor

The Increase in ρ_0 leads to the enhancement of the flux pinning strength by grain boundaries and $B_{\rm c2}$

1-2 Background Tuning of in situ PIT process

- - In *in situ* PIT wires, it is well known that these manufacturing conditions crucially affect J_c .
 - (a) The area reduction ratio of cold work

Tanaka K et al IEEE Trans. Appl. Supercond. 15 (2005) 3180

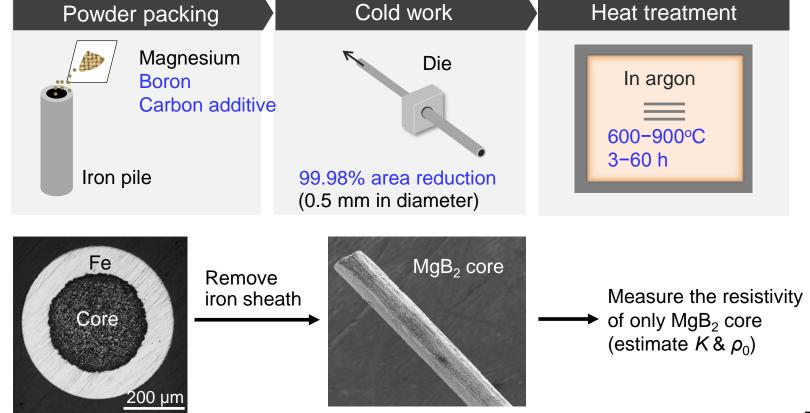
(b) The choice of starting boron powder

Chen S K et al Supercond. Sci. Technol. 18 (2008) 1473 Mahmud M A A et al IEEE Trans. Appl. Supercond. 19 (2009) 2756

(c) Heat treatment condition

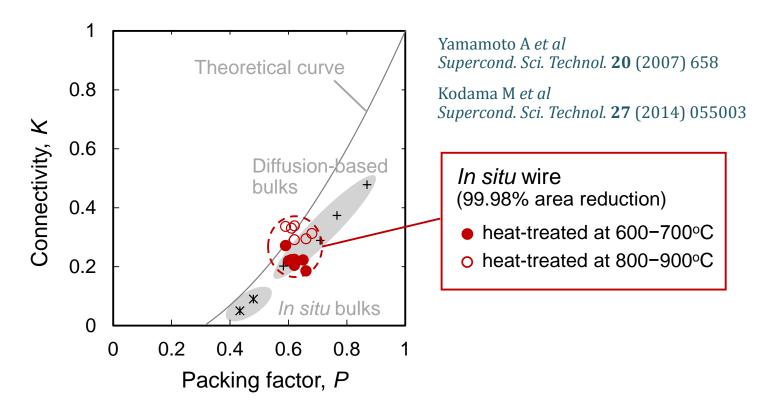
Yamamoto A et al Appl. Phys. Lett. 86 (2005) 212502 Matsumoto A et al Appl. Phys. Lett. 89 (2006) 132508

(d) Carbon addition


Dou S X et al Appl. Phys. Lett. **81** (2002) 3419 Kumakura H et al Appl. Phys. Lett. 84 (2004) 3669

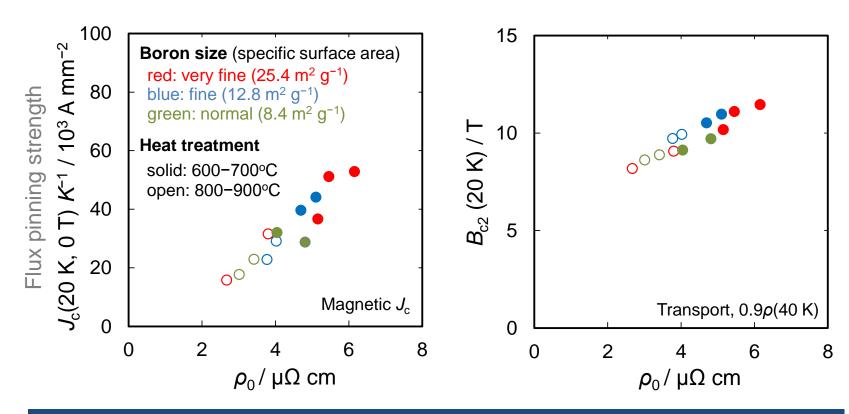
1-3 Purpose & Method Tuning of in situ PIT process Inspire the Next

Purpose To improve J_c in in situ process


Method We prepared monocore wires and investigated the relation between manufacturing conditions and J_c determination factors ($K \& \rho_0$).

1-4 Result (1) Tuning of in situ PIT process

(a) Cold work

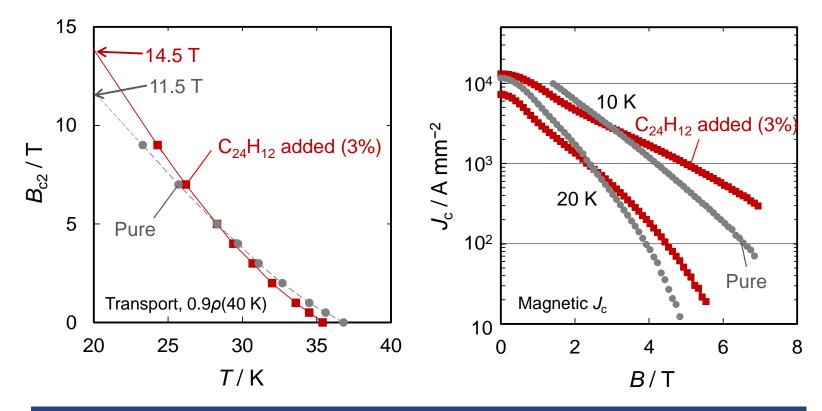

The cold work with the large area reduction is essential to enhance the packing factor and connectivity.

1-5 Result (2) Tuning of in situ PIT process

(b) Boron size, (c) Heat treatment condition

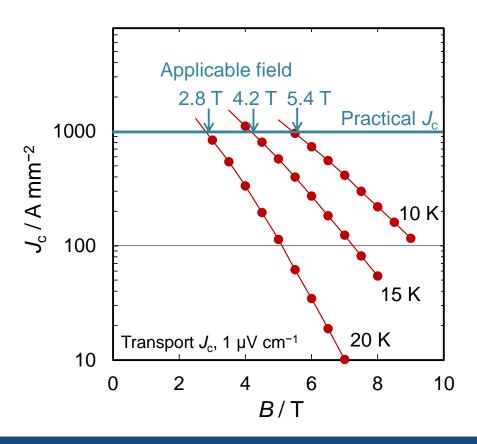
Kodama M et al Supercond. Sci. Technol. 29 (2016) 105016

The use of finer boron powder and lower-temperature heat-treatment make MgB_2 dirtier, resulting in the improvement of flux pinning strength and B_{c2} .


1-6 Result (3) Tuning of in situ PIT process

(d) Carbon addition

Ye S J *et al Supercond. Sci. Technol.* **27** (2014) 085012 Kodama M *et al Supercond. Sci. Technol.* **30** (2017) 044006


As proposed by Ye *et al* (Kumakura group), we confirmed that coronene $(C_{24}H_{12})$ is a good carbon additive.

1-7 Result (4) Tuning of in situ PIT process

$J_{\rm c}$ property (optimum conditions)

Kodama M et al Supercond. Sci. Technol. **30** (2017) 044006

The very fine boron (PVZ NanoBoron, specific surface area: 25.4 m² g⁻¹) was used.

Coronene (3%) was added.

Cold work with large area reduction (99.8%) was conducted.

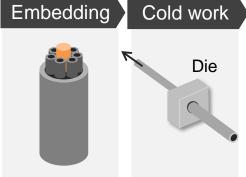
The wire was heat-treated at low temperature (600°C) for long duration (24 h).

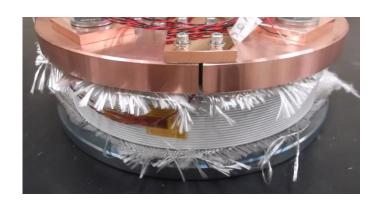
Based on the clarified relation between manufacturing conditions and J_c determination factors, we obtained sufficiently high J_c for typical *in situ* process.

Contents

- 1. Tuning of in situ PIT process
- 2. Multicore in situ PIT wire
- 3. Next generation dense PIT wire

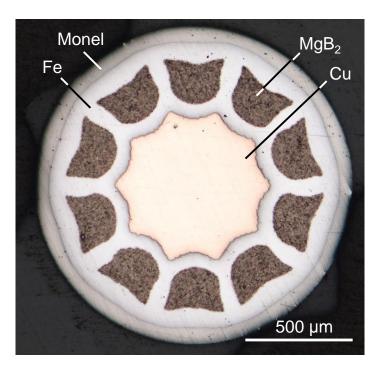

2-1 Purpose & Method Multicore in situ PIT wire



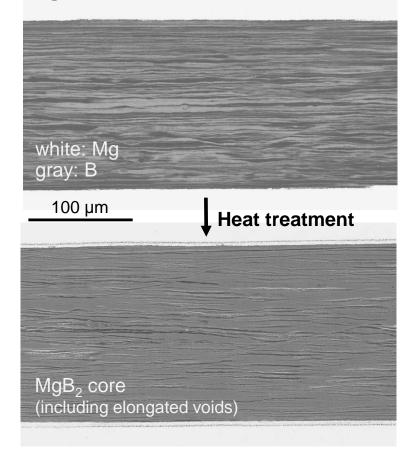

Purpose To prove the homogeneity of in situ multicore wire
 Method We fabricated a coil from 300-meter-long wire and compared its performance with that of the short sample.

Wire preparation

Coil fabrication and evaluation


Braid insulation
Wind & React process
Resin impregnation
Conduction cooling

2-2 Result (1) Multicore in situ PIT wire

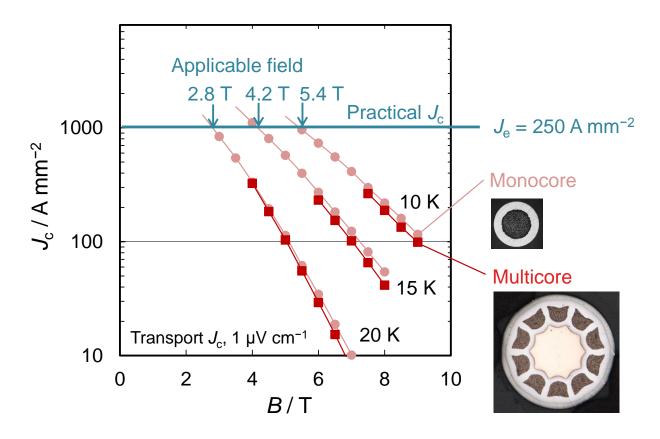

Traverse section

Tanaka H et al IEEE Trans. Appl. Supercond. 27 (2017) 4600904 Kodama M et al

Supercond. Sci. Technol. 30 (2017) 044006

Longitudinal sections

The size of MgB₂ cores is homogeneous and MgB₂ is well connected.


2-3 Result (2) Multicore in situ PIT wire

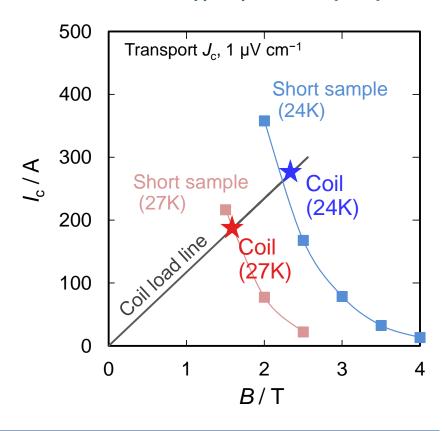
 \bigcirc

$J_{\rm c}$ property of short sample

Tanaka H et al IEEE Trans. Appl. Supercond. 27 (2017) 4600904

The $J_{\rm c}$ of multicore wire is almost the same as that of monocore wire.

2-4 Result (3) Multicore in situ PIT wire



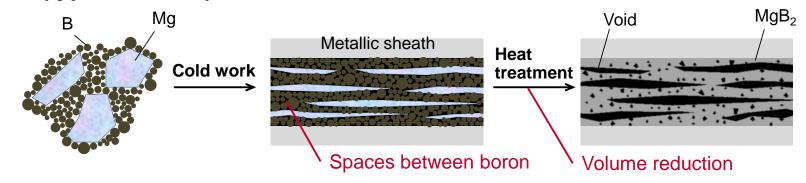
The result of coil evaluation

The specification of wire		
Diameter	1.5 mm	
Length	300 m	

The specification of coil		
Inner diameter	120 mm	
Outer diameter	190 mm	
Height	41 mm	
Inductance	55 mH	

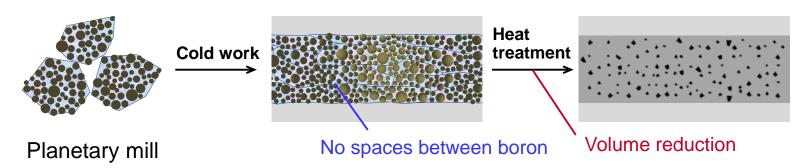
Tanaka H *et al IEEE Trans. Appl. Supercond.* **27** (2017) 4600904

The coil was successfully driven in I = 286 A and $B_{\text{max}} = 2.3$ T at 24 K. The coil I_{c} is nearly equal to the value expected from the short sample.


Contents

- 1. Tuning of in situ PIT process
- 2. Multicore in situ PIT wire
- 3. Next generation dense PIT wire

3-1 Concept Next generation dense PIT wire



PIT (typical *in situ*)

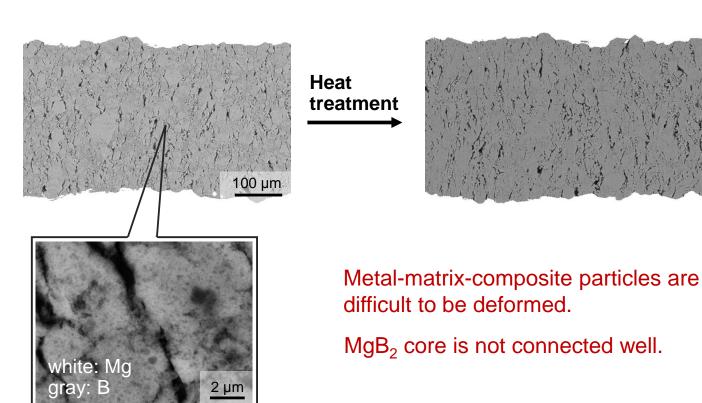
Dense PIT

Kodama M et al Supercond. Sci. Technol. 30 (2017) 044006

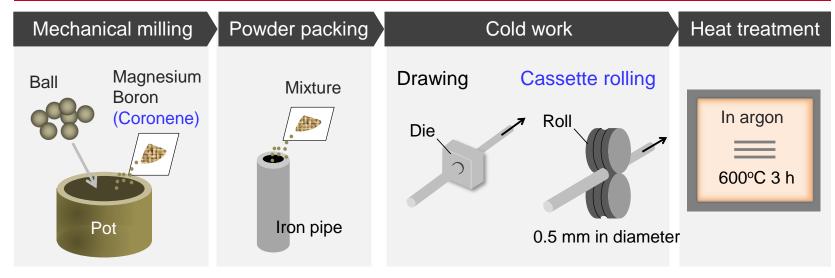
Partial generation of MgB₂ (Mechanical alloying)

Häßler W et al Supercond. Sci. Technol. 26 (2013) 025005

Metal-matrix-composite structure (Mechanical milling)


Takahashi M et al Supercond. Sci. Technol. 26 (2013) 075007

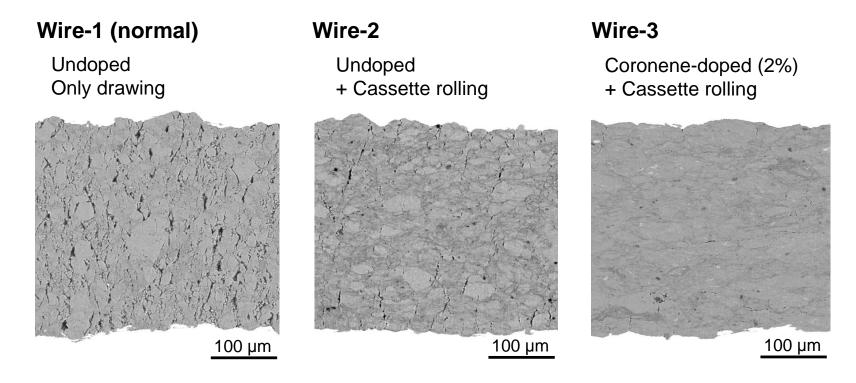
3–2 Issue Next generation dense PIT wire


Longitudinal sections (fabricated from mechanically milled powder)

3-3 Purpose & Method Next generation dense PIT wire

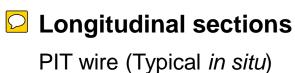
 \bigcirc

Purpose To find the way to deform the metal-matrix-composite particles To prove the concept of dense PIT wire (high packing factor & J_c) **Method** We investigated the influence of powder composition and cold work method.


Specimen	Powder composition	Cold work method
Wire-1 (normal)	Undoped	Drawing
Wire-2	Undoped	Drawing + Cassette rolling
Wire-3	Coronene doped (2%)	Drawing + Cassette rolling

3-4 Result (1) Next generation dense PIT wire

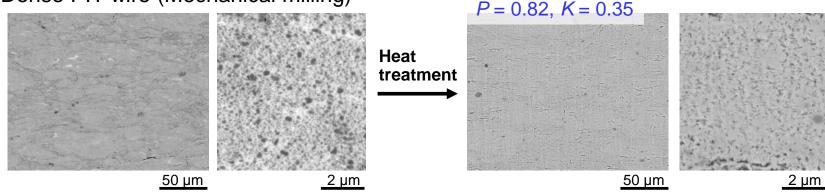
Longitudinal sections (after cold work)



Coronene addition and cassette rolling are effective to obtain a well-connected core.

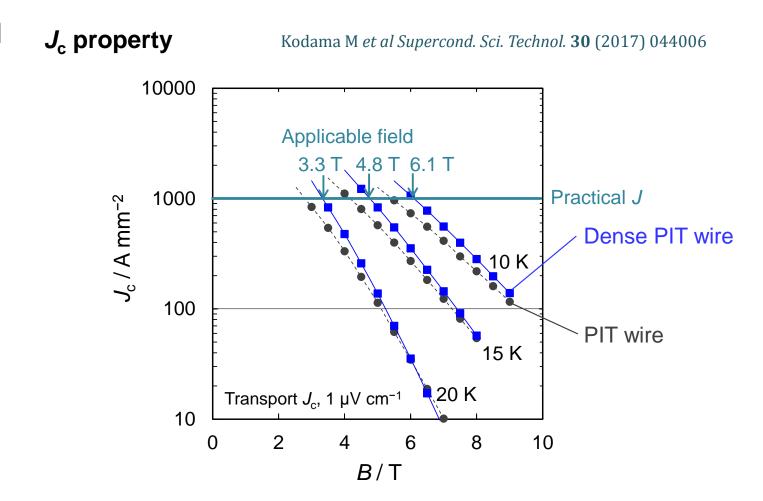
PCT International Publication No. WO 2017/130672, WO 2017/179349

3-5 Result (2) Next generation dense PIT wire



Kodama M et al Supercond. Sci. Technol. 30 (2017) 044006

Heat treatment $P \sim 0.6$, $K \sim 0.2$ MgB_2 Mg $S_0 \mu m$ $S_0 \mu m$



We confirmed higher packing factor and higher connectivity for the dense PIT wire.

3-6 Result (3) Next generation dense PIT wire

The dense PIT wire has higher applicable fields than the PIT wire.

Conclusions

Using accumulated knowledge and accurate evaluation, we optimized the manufacturing conditions (cold work, boron choice, carbon addition, and heat treatment) and improved J_c of the *in situ* PIT wire.

We prove the homogeneity of a 300-meter-long multicore *in situ* PIT wire from the evaluation as a coil.

We demonstrated that the wire fabricated from mechanically milled powder had denser MgB_2 core and higher J_c than typical *in situ* PIT wires.

Acknowledgements

We thank to Assoc. Prof. A. Yamamoto (*Tokyo Univ. of Agriculture and Tech.*), Prof. J. Shimoyama (*Aoyama Gakuin Univ.*), and Prof. K. Kishio (*The Univ. of Tokyo*) for helpful discussion; Drs. G. Nishijima, A. Matsumoto, and H. Kumakura (*NIMS*) for the *I*_c measurement.

Part of this work was supported by the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST).

Part of this work was supported by "Nanotechnology Platform" (project no.12024046) of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.