

NMR Relaxation Times of Animal Brains and Protein Models: Implications for Human Brain ULF-MRI

Hui Dong^{1,2}, Lixing You^{1,2}, Ben Inglis³, Seong-min Hwang^{1,4}, Michael Wendland⁵, Ian Bar⁶, John Clarke¹

¹ Department of Physics, University of California (UC), Berkeley, US

² Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, China

³ Henry H. Wheeler Jr. Brain Imaging Center, UC Berkeley, US

⁴ Korea Research Institute of Standards and Science, Daejeon, Republic of Korea

⁵ Department of Bioengineering, UC Berkeley, US

⁶ Department of Chemistry, UC Berkeley, US

Outline

- Background
- ULF T_1 vs. High Field $T_{1\rho}$ of Ex Vivo Pig Brains
- •ULF T_1 vs. High Field T_{10} of Protein Models
- Conclusions and Outlook

Nuclear Magnetic Resonance (NMR)

 $v_0 = 42.58 \text{ MHz/tesla}$ γ : gyromagnetic ratio

Magnetic moment ($\mu_p B_0 << k_B T$): $M = N \mu_p^2 B_0 / k_B T$ (Curie Law)

Equilibrium

90° RF pulse

Precession

Relaxation Processes in NMR

- Longitudinal (spin-lattice) relaxation time T_1
 - Time for polarization to return to equilibrium along the magnetic field direction
- Transverse (spin-spin) relaxation time T_2
 - > Time for precessing spins to dephase
- T_1 and T_2 depend strongly on magnetic field
 - NMR Dispersion (NMRD)
 Microscopic interactions, motional processes...
 - \triangleright The challenge of measuring T_1 and T_2 below 10 kHz

Revised for SNF publication

T_{1p} Technique

 T_{10} time: spin-lattice relaxation time in the rotating frame

$$\omega_{\rm SL} = \gamma B_{\rm SL}$$

$$M(t_{SL}) = M(0)e^{-t_{SL}/T_{1\rho}}$$

Revised for SNF publication

T_{1ρ} Technique (cont.)

 $T_{1\rho}$ enables the measurement of low frequency processes at any currently available clinical B_0 field strengths (SL frequency: 100 Hz to a few kHz)

- •Applications:
 - ✓ Estimation of stroke onset time
 - ✓ Progression of Alzheimer's and Parkinson's diseases
 - ✓ Collagen-rich tissues such as cartilage
- Challenge:
 - ✓ Specific Absorption Rate (SAR) limit SAR scales as $B_0^2 \cdot B_{SL}^2$: at $B_0 = 3$ T, maximal SL field is ~12 μ T.

NOTE THAT:

The B_0 field in the laboratory frame at ULF is comparable to the B_{SL} field in the rotating frame

Motivation

To compare ULF T_1 and conventional $T_{1\rho}$ and study their relation.

ULF MRI System at Berkeley

- \square $B_{\rm p} \approx 80 \, {\rm mT}$
- \square $B_0 \approx 58 \sim 240 \ \mu\text{T} \rightarrow f_{\text{Larmor}} \approx 2.5 \sim 10 \ \text{kHz}$
- \square Low- T_c Superconducting Quantum Interference Device

Single Spin Echo (SSE) Sequence for ULF T₁ Measurement

Varying
$$t \xrightarrow{T_1} T_1$$

Carr-Purcell-Meiboom-Gill (CPMG) Pulse Sequence for T_2 Measurement

Outline

- Background
- ULF T_1 vs. High Field $T_{1\rho}$ of Ex Vivo Pig Brains
- ULF T_1 vs. High Field T_{10} of Protein Models
- Conclusions and Outlook

Pig Brain White & Gray Matter: T_{10} @7 T vs. T_1 @ULF

- Field dependence of T_1 and T_{1p}
- Different dominant relaxation mechanisms

The "Elbow"

Origin of the "elbow":

When B_0 is reduced below ~ 150 μ T, the minimum field is determined by the local dipolar field produced by macromolecules.

Dong et al. Magn. Reson. Med. (2017) DOI: 10.1002/mrm.26621

Heating Effect of $T_{1\rho}$

Spin lock → **Temperature increase** → **Protein conformation change**

The elbow disappears after $T_{1\rho}$ scan because of heating effect!

Outline

- Background
- ULF T_1 vs. High Field $T_{1\rho}$ of Ex Vivo Pig Brains
- ULF T_1 vs. High Field $T_{1\rho}$ of Protein Models
- Conclusions and Outlook

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 41, July 2017. This invited oral presentation Tu-I-SQU-01 was given at ISEC 2017.

Slides 15 ~ 19 were removed for Copyright reason

Conclusions & Outlook

- $\succ T_{1\rho}$ and ULF T_1 have different dominant relaxation mechanisms
- The "elbow" reflects the average local dipolar field

- **■** More efforts required for theoretical explanation
- Stroke and traumatic brain injury (TBI) study

Many thanks for your attention!

Support:

Donaldson Foundation Henry H. Wheeler Jr. Brain Imaging Center, UC Berkeley Chinese Academy of Sciences