ISEC2017 at Sorrento 16/Jun/2017 Fr-I-DIG-03

Design and high-speed demonstration of an SFQ complex event detector circuit for complex event processing

Ryosuke Sato*, Tomohiro Ono, Yuki Yamanashi, Nobuyuki Yoshikawa Department of Electrical and Computer Engineering, Yokohama National University

The circuits were fabricated in the clean room for analog-digital superconductivity (CRAVITY) of National Institute of Advanced Industrial Science and Technology (AIST) with the advanced process 2 (ADP2).

Background

Big data

Large amount and various kinds of information

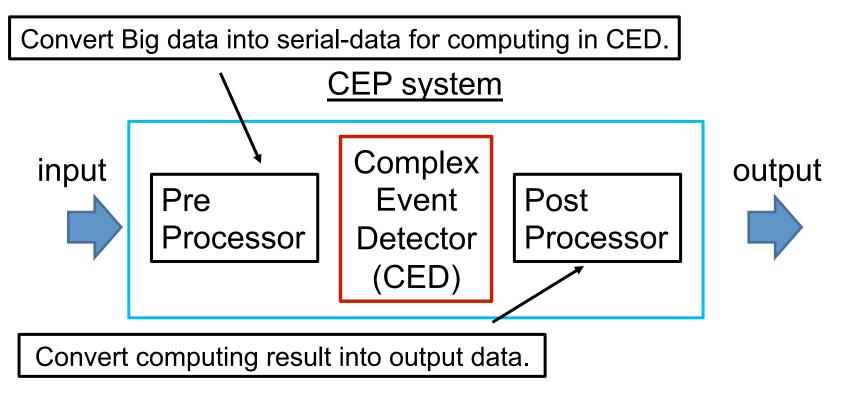
Traditional data processing approach is inadequate.

	Batch processing	Real time processing
Equipment	Hard disk	Memory
Time scale of data	Days - Years	Seconds - Minutes
Example	 Comparison of monthly site accesses Calculation of monthly sales 	 Detection of cyber terrorism Financial algorithm transaction

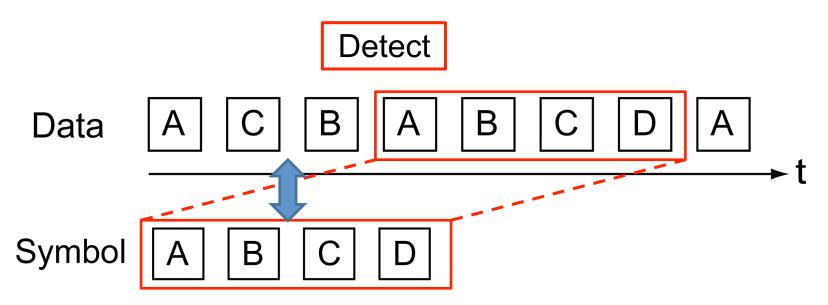
As the amount of data increases, real time processing is gathering attention.

Complex Event Processing

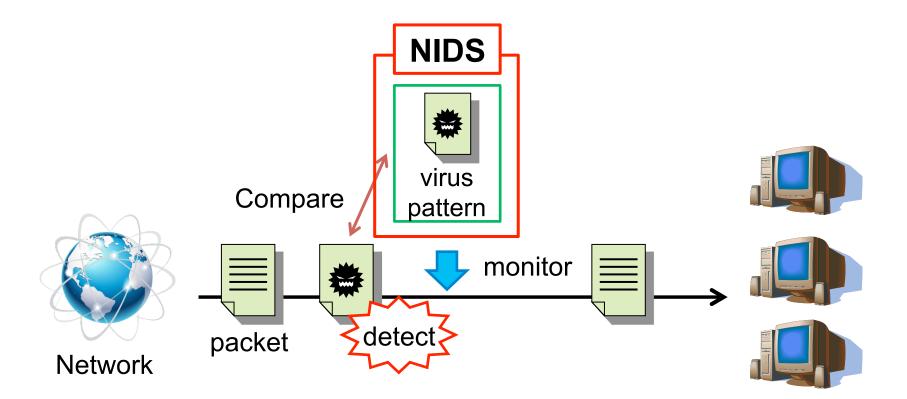
- Complex Event Processing (CEP)
 >real-time processing for stream data
 - detection of cyber terrorism
 - financial algorithm transaction


IBM Security Network Protection XGS (XGS5100)

 $\cite{tabular} time{tabular} time{tabular}$

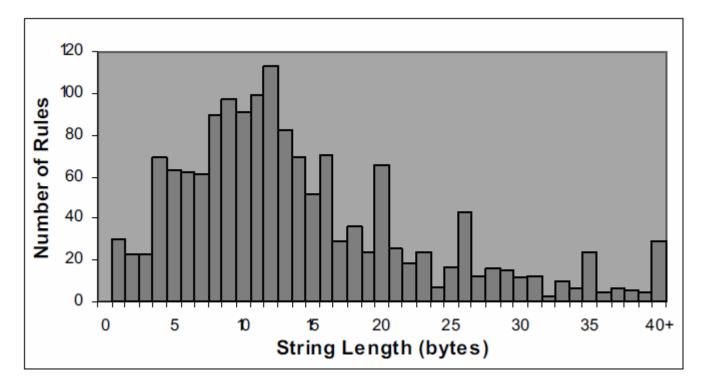

Complex Event Detector

Complex Event Detector (CED)
 Component circuit of CEP system
 Performs pattern matching between "Data" and "Symbol"


Pattern Matching

- Main operation of CED circuit
- Detecting "Symbol" string from "Data" string by comparison
- Corresponding to regular expression, variety of patterns are detected.

Network Intrusion Detection System


• Network Intrusion Detection System (NIDS)

NIDS detects virus by comparing packet and virus pattern.

Virus Pattern of NIDS[2]

- Total number of virus pattern in snort at 2003 : 1542
- Average length: 14 Symbol

[2] M. Aldwairi, T. Conte, and P. Franzon, "Configurable string matching hardware for speeding up intrusion detection," ACM SIGARCH Computer Architecture News, vol. 33, no. 1, pp. 99–107, Mar. 2005.

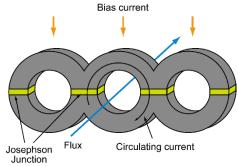
Problem of CMOS NIDS

CMOS NIDS[3]			
Method	Device	Logic cells	Throughput
NFA	Virtex2P	12822	1.85 Gbps

[3] T. T. Hieu, T. N. Thinh, T. H. Vu, and S. Tomiyama, "Optimization of Regular Expression Processing Circuits for NIDS on FPGA," in 2011 Second International Conference on Networking and Computing, 2011, pp. 105–112.

• Communication speed is getting faster.

➢Optical communication is high speed. ex. OC-768 (40Gbps)

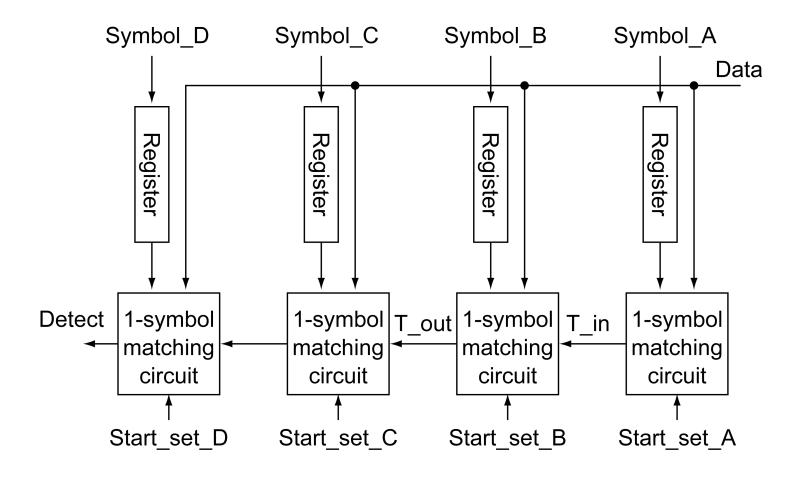


It is difficult to catch up with growth of communication speed.

Purpose

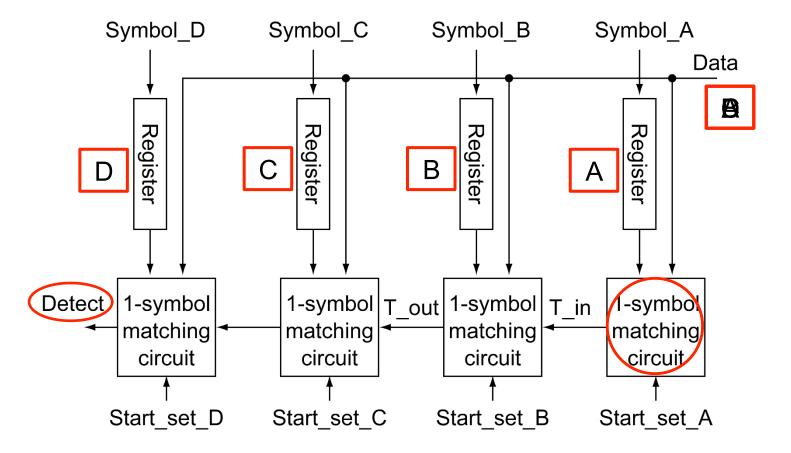
NIDS must catch up with growth of communication speed. ex. OC-768 (40 Gbps)

Single Flux Quantum : SFQ
 >High speed operation (10s of GHz)
 >Low power consumption


• Purpose

➢ Design CED circuit for NIDS by SFQ circuit

Demonstration CED circuit for regular expression

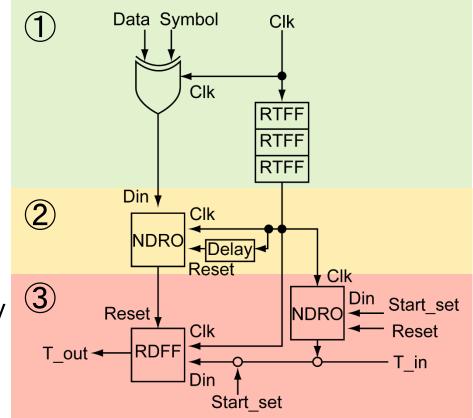

Structure of SFQ CED Circuit

- Composed of 1-symbol matching circuit (1SMC)
- Comparing 8-bit "Data" with "Symbol" bit-serially at 1SMC

Operation of SFQ CED Circuit 1/2

- Data = Symbol : Next "Symbol" and "Data" are compared
- ex. Symbol : A B C D Data : A B C D Data€Streadbol_B

11


Operation of SFQ CED Circuit 2/2

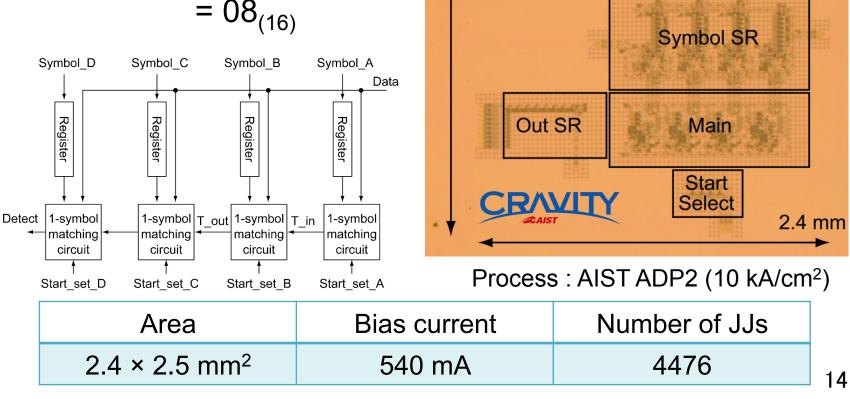
- Decide length of Symbol by Start_set signal
 - ex. Symbol : B<u>CD</u> Data **Data Data** : A B C D Data Symbol D Symbol C Symbol B Symbol A Data B Register Registe Register Register В D Detect 1-symbol T out -symbol 1-symbol 1-symbol T in matching matching matching matching circuit circuit circuit circuit Start set B Start set D Start set C Start set A

Operation of 1-Symbol Matching Circuit

- Structure
 XOR, Flip Flops

 Comparison part
 Result storing part
 Result control part
- Operation
 - 1. Compare 8-bit input bit-serially
 - 2. Register result of comparison
 - 3. Output result of comparison

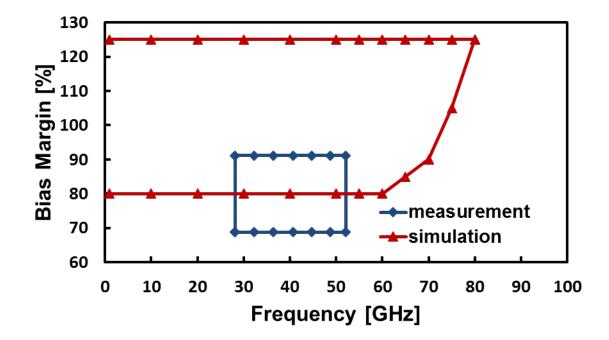
If "Data" = "Symbol", T_out propagates to next 1SMC.


Design 4-Symbol SFQ CED Circuit

2.5 mm

Data SR

CG


- Pattern matching for 4 or less Symbol
- 1 Symbol is 8 bits.
 "Symbol" = 00001000₍₂₎ = 08₍₁₆₎

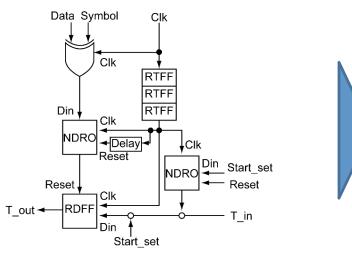
Waveform of High Speed Measurement

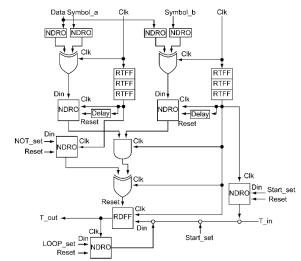
Operation Margin of 4-Symbol SFQ CED Circuit

	Simulation	Measurement
Bias Margin @ 52.1 GHz	80% ~ 125%	68.8% ~ 91.2%

Regular Expression

• We confirmed correct operation of exact matching.

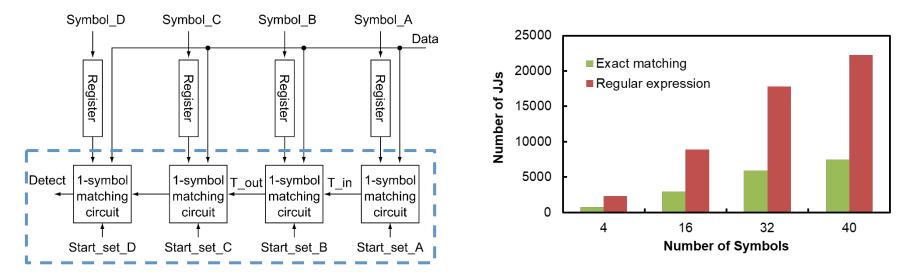

Regular expression
Description of flexible pattern
Virus pattern is written in regular expression.
ex: A.CD = ABCD, ACCD, ADCD, •••


Expression	Meaning	
[.]	Matches any data.	
[A+]	Matches a sequence of one or more data "A".	
[A B]	Matches either data "A" or "B".	
[^A]	Matches the all data except data "A".	

Corresponding to Regular Expression

Expression	Meaning	
[.]	Matches any data.	
[A+]	Matches a sequence of one or more data "A".	
[A B]	Matches either data "A" or "B".	
[^A]	Matches the all data except data "A".	

ex: A.CD = ABCD, ACCD, ADCD, ••



Corresponding to regular expression by adding functions to 1SMC.

Scaling of SFQ CED circuit

- SFQ CED circuit has scalability.
- Operating speed is not reduced by scaling up.

	Exact matching	Regular expression
JJs (40 Symbol)	7448	22260

If we design CED circuit for enough Symbol, number of JJs will be 22260.

Summary

- CEP is one approach to process big data.
 >One of the applications of CEP system is NIDS.
 >Performs pattern matching in CED circuit
- Demonstrated 4-symbol SFQ CED circuit
 ➢Number of JJs is 4476.
 ➢Bias margin at 52.1 GHz is 68.8%~91.2%.
- Estimated CED circuit for regular expression
 Added functions to 1SMC for regular expression
 >when we extended the scale of CED circuit, operating speed isn't reduced
 >Number of JJs will be 22260 for a 40-Symbol CED.

Thank you for your attention !