

Progress in the development of high performance pnictide wires

<u>Xianping Zhang</u>, Chao Yao, Chiheng Dong, He Huang, Dongliang Wang, Yanwei Ma

Institute of Electrical Engineering, Chinese Academy of Sciences

Main collaborators: Satoshi Awaji (IMR, Tohoku university)

Outline

Good superconducting property of pnictide

Two main problems existing in the PIT wires

Hot pressing effects on Sr_{0.6}K_{0.4}Fe₂As₂ tapes

Progress in the multifilament wire /Cu sheathed tapes

Iron superconductor

J. Am. Chem. Soc., **130** (11), 3296 -3297, 2008. 10.1021/ja800073m Web Release Date: February 23, 2008 Copyright © 2008 American Chemical Society

Iron-Based Layered Superconductor La $[O_{1-x}F_x]$ FeAs (x = 0.05-0.12) with T_c = 26 K

Yoichi Kamihara,*† Takumi Watanabe,‡ Masahiro Hirano,†§ and Hideo Hosono†\$

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

hosono@msl.titech.ac.jp

Received January 9, 2008

-- - -

Abstract:

We report that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F⁻ ions at the O²⁻ site. The transition temperature (T_c) exhibits a trapezoid shape dependence on the F⁻ content, with the highest T_c of ~26 K at ~11 atom %.

Main known Fe-based superconductors

Among them, the three phases most relevant for wire applications are 1111, 122, and 11 types with a T_c of 55, 38 and 8 K, respectively.

Very high upper critical fields in iron pnictides

 Pnictides, e.g. 122 and 1111, could in principle provide fields up to 40-50 T at 20K.

An extrapolated $B_{c2}(0 \text{ K})$ can exceed 200 T, especially *at 20 K, the* B_{c2} *can be 40-*50 T, suggesting a very encouraging application in high field magnets.

Gurevich, *Nature Mater.* 10 (2011) 255

High critical current densities in iron pnictides

The single crystal of boththe 1111 and 122 type pnictidesshow high J_c values.The anisotropy of thepnictides is relatively small.

IBS: high-field applications

Shimoyama, SuST 27 (2014) 044002

Outline

Good superconducting property of pnictide

Two main problems existing in the PIT wires

Hot press effects on Sr_{0.6}K_{0.4}Fe₂As₂ tapes

Progress in the Cu sheath and multifilament wire

Fabrication technique for pnictide wires

Powder-in-tube method:

Simple, easy for fabrication Has been used for Bi2223 superconductor

Challenges for high- J_c pnictide wire

1) How to solve weak-linked problem

Critical misorientation angle

YBCO : 3-5°

Pnictide 122: 9º

Katase et al., Nat. Commun. 2, 409 (2011)

2) How to achieve high density core

Hysteresis in transport J_c : signature of weak links

- A hysteretic phenomenon observed for J_c in an increasing and a decreasing field indicated a weak-link behavior, similar to that of the cuprates.
- To overcome the weak-link problem, one effective method is to engineer textured grains to minimize deterioration of Jc across high-angle grain boundaries, like the Bi2223.

Transport J_c of flat-rolled 122 tapes

Fe-sheathed Sr-122 tape At 4.2 K/10 T, $J_c = 1.7 \times 10^4 \text{ A/cm}^2$

The degree of texturing F: ~0.4

Sci. Rep. 2, 998 (2012)

Ag-sheathed Ba-122 tape At 4.2 K and 10 T: $J_c = 5.4 \times 10^4 \text{ A/cm}^2$ The degree of texturing F: ~0.69

Scripta Mater. 99 (2015) 33

The textured PIT seems an effective method to overcome the weak-link problem in pnictide wires, but…

There are still existed some impurity phases and pores, and the degree of texture is still low, e.g. only about 0.4.

• Suggesting that there is more room for improvement.

Challenges for high- J_c pnictide wire

1) How to solve the weak-link problem

2) How to achieve high density core

Cracks and voids are important reasons for low critical current density values

Cross section of 122/Ag tapes by Hot Pressing

Hot pressing significantly decreased the tape thickness, *ie*. from 0.44 mm to 0.3 mm.

Sintered tapes: loose microstructure from more voids, and/or cracks **HP tapes:** higher density with fewer voids

thus significant increase in J_c -B.

4465 (2014)

Outline

Good superconducting property of pnictide

Two main problems existing in the PIT wires

Hot pressing effects on Sr_{0.6}K_{0.4}Fe₂As₂ tapes

Progress in the multifilament wire /Cu sheathed tapes

By pressure optimization

Record transport J_c values were achieved in 122/Ag tapes: $J_c > 10^5$ A/cm² (4.2 K, 10 T)

The superior J_c can be attributed to higher grain texture and improved densification.

Zhang et al., APL 104 (2014) 202601

By temperature optimization

The new record transport J_c values were achieved in 122/Ag tapes: $J_c \sim 1.2 \times 10^5$ A/cm² (4.2 K, 10 T)

1. The J_c was over 10^5 A/cm² at 13 T;

2. The J_e was about 2.6 $\times 10^4$ A/cm² at 10T.

Texture and hardness: which is dominant ?

At 4.2K, 10 T, Ic=437 A, J_c~150000A/cm²

At 4.2K, 14 T, $J_c \sim 140000 \text{A/cm}^2$ At 4.2K, 27 T, $J_c \sim 55000 \text{A/cm}^2$

The anisotropy of Jc at 10T is 1.37

He Huang, et al., arXiv:1705.09788

Analysis on the superconducting core

Good crystallinity

Clean grain boundary

Vickers hardness ~132

RT: Homogeneous MT: high quality superconducting phase XRD: Good crystallinity, texture

Good connectivity !

Microstructure analysis: EBSD

High texture degree ! F value ~0.87

42.8% number fraction of misorientation angle <9°

Pinning property

The $h_{\rm max}$ value is close to 0.2

The dominant pinning is Grain boundary pinning

The Small grain size is beneficial to the improvement of vortex pinning property.

Similar with the HP Sr-122, Nb₃Sn and MgB₂ superconducting wires

Optimization of hot pressing parameter

Outline

Good superconducting property of pnictide

Two main problems existing in the PIT wires

Hot pressing effects on Sr_{0.6}K_{0.4}Fe₂As₂ tapes

Progress in the multifilament wire /Cu sheathed tapes

Sr-122/Ag-Fe multifilamentary wires

7/114 filamentary Sr122 tapes

Weak field dependence of Jc

Yao et al., JAP 1118, 203909 (2015)

Fabrication and transport properties of Sr-122/Ag-Monel multifilamentary wires by rolling process

• The transport J_c achieved 36 kA/cm² at 4.2 K/10T

Very weak magnetic field dependence at high fields.

Yao et al., SuST, 30, 075010 (2017)

Density is an important factor in the Jc improvement

Hardness of the Sr-122 phase decreases with the decrease of annealing temperature

tape (thickness = 0.60 mm) 850 °C 1 μ m (d) tape of 0.43 mm in thickness

Good compressive strain property of the Sr-122/Ag/Monel tape

Weak dependence on compressive strain.

Copper as the sheath material

Good property of copper: Low cost, high thermal stability

Reaction layer is the main problem

Low sintering temperature is one way

Copper as the sheath material

The thickness of the reaction layer increased with heat temperature increasing.

From several micron to 25 micron

Supercond. Sci. Technol. 29 (2016) 095006

EDX line scan

Reaction layer

Even at 740°C, an impurity phase is produced when the sintering time is longer than 30 min.

J_c property

4.2K,10T, Jc~3.5×10⁴A/cm² Je~10⁴A/cm²

At 4.2K, 26T, Jc~ 1.6×10⁴A/cm²

Copper is a promising sheath material for Pnictide superconductor

100m long Sr-122 tapes by rolling process

Transport Jc distribution along the length of the first 100 m long 7filament Sr122 tape

Wire

Tape

Prospects

Thank you for your attention !

中国科学院电工研究所 NSTITUTE OF ELECTRICAL ENGINEERING, CHENESE ACADEMY OF SCIENCES

