

13th European Conference on Applied Superconductivity, Geneva, 17-21 September 2017

Recent research developments of adiabatic quantum-flux-parametron circuits technology toward energy-efficient high-performance computing

N. Yoshikawa^{1,2}, N. Takeuchi², C.L. Ayala², Q. Xu², K. Fang¹, N. Tsuji¹, F. China¹, Y. Murai¹, T. Ortlepp^{2,3}, Y. Yamanashi^{1,2}

¹Department of Electrical and Computer Engineering, Yokohama National University, Japan ²Institute of Advanced Sciences, Yokohama National University, Japan ³The CiS Research Institute for Microsensor Systems GmbH, Germany

Outline

- Background and motivation
- Operation principle of adiabatic quantum flux parametron (AQFP)
- AQFP as an energy-efficient logic circuit
 - Evaluation of AQFP as a logic circuit
- Design methodology of AQFP logic circuits
- EDA tools for Top-Down design
- Summary

Background

Estimated power consumption to realize an exa-scale computer

- > 100 MW
- ~ \$million/100 MW per year

K computer (Japan)

Peak performance: 10.5 PFLOPS Power consumption: 12.6 MW

1st-ranked computers in recent TOP500

http://www.top500.org/

Low-Power Logic Devices is highly demanded.

Energy-Efficient SFQ Circuits

DC Powered

ERSFQ (Hypres)

 $P_{\rm S} \sim P_{\rm D} \sim I_{\rm c} \Phi_0 f$

O. A. Mukhanov, *IEEE Trans. Appl. Supercond.* **21**, 760 (2011).

LV-SFQ (Nagoya Univ.)

AC Powered

RQL (Northrop Grumman)

ac bias

 $P_{\rm S} \sim 0$, $P_{\rm D} \sim I_{\rm c} \Phi_0 f$

Q. P. Herr *et al.*, *J. Appl. Phys.* **109**, 103903 (2011).

AQFP (Yokohama National Univ.)

 $P_{\rm S} \sim \theta$, $P_{\rm D} < I_{\rm c} \Phi_0 f$

N. Takeuchi, *et. al.*, *SUST*, 26, 035010 (2013).

YNU YOKOHAMA National University

Comparison of Energy-Delay Product

Adiabatic Quantum-Flux-Parametron (AQFP)

AQFP gate

An SFQ is stored in the right or left loop depending on I_{in} .

Potential energy of the gate

Potential energy changes adiabatically during switching.

Operation principle is based on QFP gates.

Adiabatic Quantum-Flux-Parametron (AQFP)

AQFP gate

I_{out} flows downward.

Potential energy of the gate

Potential energy changes adiabatically during switching.

Operation principle is based on QFP gates.

Adiabatic Quantum-Flux-Parametron (AQFP)

AQFP gate

*I*_{out} flows upward.

Potential energy of the gate

Potential energy changes adiabatically during switching.

Operation principle is based on QFP gates.

Evolution of Junction Phase at 4.2 K

YNU YOKOHAMA National University

Bit Energy vs. Clock Period of AQFP

When rise time is 1000 ps, $E_{\rm bit} = 0.023 \, I_{\rm c} \Phi_0$ (~ $20 k_{\rm B} T$).

→ 1/1000 of RSFQ

Bit Energy Measurement of AQFP using a Superconducting Resonator

Measurement System | Weak | High Q | AQFP | AQFP |

Clock frequency: 4.998 GHz

Q of resonator: 357

Measured power consumption of AQFP

$$P_{\rm qfp} \sim 50 \text{ pW}$$

 $E_{\rm bit} \sim 10 \text{ zJ} \sim 170 k_{\rm B}T$

AIST Nb Josephson standard process (STP2) was used.

Comparison of Superconducting Logics

Logic	Clock Freq. [GHz]	$E_{bit}/I_{c}\Phi_{0}$	Typical I _c [μΑ]	EDP [aJ·ps]
CMOS	4	-	-	~10 ⁵
RSFQ [1]	50	19	150	120
eSFQ [2]	20	0.8	150	12
RQL [3]	10	0.33	150	10
LV-RSFQ [4]	20	3.5	150	54
AQFP [5]	5	0.0042	50	0.086
Quantum limit	-	-	-	5.3 × 10 ⁻⁵

- [1] X. Peng et al., IEICE Trans. Electron. **E97.C**, 188 (2014).
- [2] M. H. Volkmann et al., Supercond. Sci. Technol. **26**, 015002 (2013).
- [3] Q. P. Herr et al., J. Appl. Phys. **109**, 103903 (2011).
- [4] M. Tanaka et al., IEEE Trans. Appl. Supercond. 23, 1701104 (2013).
- [5] N. Takeuchi et al., Supercond. Sci. Technol. 28, 015003 (2015).

Evaluation of AQFP as a Logic Circuit

Important metrics as a logic circuit

- Gain
- Functionality
- Speed
- Energy consumption
- Driving ability
- Connectability
- Error rates
- Robustness
- Density

Gain

Current gain of AQFP is considerably large.

Current gain vs. input current at T = 0K

If we assume

 $\delta I_{in} \sim 1 \ \mu A$, and $I_c = 50 \ \mu A$, the current gain is given by $I_c / \delta I_{in} \sim 50$.

 δI_{in} : input thermal noise

cf. In RSFQ circuits with $I_{in} \sim 20~\mu\text{A},~I_{c} = 100~\mu\text{A},$ the current gain is ~ 5 .

Functionality

- NOT gate is cost free.
- Majority gate is a basic logic gate.

NOT gate is made by using a transformer with negative coupling.

Buffer NOT $L_{in} \not = l_{in} \qquad l_{in}$

Majority gate is made by connecting three buffers in parallel.

$$x = MAJ(a, b, c) = ab + bc + ac$$

Speed

- AQFP is driven by multi-phase clocks. (4-phase is typically used.)
- Target clock frequency is 5 GHz.
- Double excitation method can increases the clock frequency [1].
- Latency is improved by increasing the number of phase.

Clocking of AQFP gates

Energy Consumption

- The static energy consumption is zero, the dynamic energy consumption is proportional to the clock frequency.
- The energy consumption is decreased by using high- J_c and high- β_c junctions.

β_c Dependence of Bit-Energy of AQFP

Bit energy:

$$E_{bit} = 2I_c \Phi_0 \frac{\tau_{sw}}{\tau_{rf}}$$

Intrinsic switching time:

$$\tau_{sw} \approx \frac{\Phi_0}{I_c R} = \sqrt{\frac{2\pi\Phi_0 c}{\beta_c j_c}}$$

Driving Ability

■ Fan-out of AQFP gate is large (4 ~ 16).

1:8 splitter

1:16 splitter

(cf. Fan-out of RSFQ circuits: 2 ~ 3.)

Connectability

- The output current of AQFP gate decreases with increase of interconnect inductance, which limits the wire length.
- $\blacksquare \ \mathsf{L}_{\mathsf{max}} \sim 1 \ \mathsf{mm}.$

Testing of maximum wiring length

N. Takeuchi et al., J. Appl. Phys. 117, 173912 (2015). YNU YOKOHAMA National University

Error Rates

■ Bit-error-rate of AQFP gate is quite small when $E_J >> k_BT$.

2 GHz bit-error-rate test results

YNU YOKOHAMA National University

Robustness

Demonstrated 84k-Junction AQFP buffer array

AQFP is robust because

- The operation is based on differential pairs of junctions and inductances.
- The critical current of all junctions is the same.

Area	$6.68 \times 6.23 \text{ mm}^2$		
Bias Current	3.60 mA		
JJ number	83736		

YNU YOKOHAMA National University

Density

Multi-layer processes improve the circuit density.

Design Methodology

Logic cells can be designed by placing four building blocks:
 Buffer, NOT, Constant, Branch

$$x = \text{MAJ}(a, b, c)$$

$$= a \cdot b + b \cdot c + c \cdot a$$

$$= \overline{ab}$$

$$x = \text{MAJ}(\overline{a}, 1, \overline{b})$$

$$= \overline{a} + \overline{b}$$

$$= \overline{ab}$$

Layout of Basic Cells

 Symmetric design prevents the parasitic coupling between the excitation and output inductance.

Building block cells

Majority cell

AQFP Logic Design

- Logic cells are placed together like Lego blocks
- Logic gates grouped by phase & data flow

Demonstrated AQFP Circuits

16-word by 1-bit register file

8-bit carry look-ahead adder

C. L. Ayala et al., IEEE Trans. Appl. Supercond., 27 (2017).

4-bit AQFP RISC Microarchitecture

EDA Tools for Top-Down Design

AQFP Circuit Design using EDA Tools

Layout of 16-b AQFP carry-look-ahead adder

Future Directions

- Investigation of design methodology and EDA tools for large-scale AQFP integrated circuits
 - Wire-length limitation
 - Multi-phase clock distribution
 - Majority-based logic synthesis
 - Microprocessor architecture
- More energy efficient logic
 - Use reversible QFP (RQFP) [1].
- New applications
 - Control and readout circuits for Quantum computers
 - Read out circuits for superconducting sensor arrays

Summary

- Adiabatic quantum flux parametron (AQFP) is extremely energy efficient logic.
 - ~1 zJ/bit @5 GHz
 - Three orders of magnitude smaller than energy-efficient SFQ logic
 - Six orders of magnitude smaller than CMOS logic
- AQFP has excellent properties as a logic circuit in terms of gain, functionality, speed, energy consumption, driving ability, error rates, robustness, and density.
- AQFP microprocessors are under development based on CMOS-like design methodology and top-down EDA tools.