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Abstract—In this paper, we describe the optimization of 

transition-edge-sensor (TES) detector arrays for the third-

generation camera for the South Pole Telescope (SPT-3G). The 

camera, which contains ~16,000 detectors, will make high-

angular-resolution maps of the temperature and polarization of 

the cosmic microwave background. Our key results are: (i) 

scatter in the transition temperature of Ti/Au TESs is reduced by 

fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer; 

and (ii) the thermal conductivity of the legs that support our 

detector islands is dominated by the SiOx dielectric in the 

microstrip transmission lines that run along the legs. 

Index Terms—Transition Edge Sensors, Superconducting 
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I. INTRODUCTION

URRENT cosmic microwave background (CMB)

[1], [2] experiments aim to precisely measure 

the CMB polarization, especially the parity-

violating B-mode polarization, [3] with the goal of 

measuring the energy scale of inflation, the number 

of neutrino species, and the sum of masses of 

neutrinos. [4], [5] The measurements require 

exquisite sensitivity, which means large-format 

cameras with many bands for removing foreground 

signals. [6] One such camera, which is being built 

for the next-generation experiment on the South 

Pole Telescope (SPT-3G), [7] has 2690 pixels, each 

with 6 transition-edge sensor (TES) detectors [8], 

[9] measuring 2 linear polarizations in 3 bands, and

will be deployed at the end of 2016.

In this paper, we describe the optimization of the 

TES detector arrays for SPT-3G. The TES critical 

temperature (Tc) distributions of wafers prepared by 

two different detector fabrication processes and two 

different TES film structures have been 

systematically investigated. The result shows that 

the TES performance becomes more controllable if 

the TES is prepared on an unetched surface with a 

thin Ti(5 nm)/Au(5 nm) buffer layer. The thermal 

link, a LSN(low-stress silicon nitride)/Nb/SiOx/Nb 

quadruple layer structure, is another critical 

component for the detector array. Two test wafers 

were fabricated to investigate the detailed thermal 

link properties as functions of the film structure and 

the leg dimensions. We found that the thermal 
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conductance is approximately linearly dependent on 

the leg width-to-length ratio in our detector arrays, 

and the LSN contributes approximately 30% of the 

total thermal conductance of the whole leg. These 

results provide important information for improving 

the overall sensitivity of the detector array.  

The paper is organized as follows: Section II 

gives an overview of the detector fabrication and 

characterization, Section III describes the TES 

performance with different substrate surfaces and 

film structures, and Section IV describes an 

investigation of the thermal link properties.  

II. DETECTOR DESIGN AND CHARACTERIZATION

A. Design

The SPT-3G camera has 10 hexagonal detector

arrays, each containing 269 pixels. Fig. 1(a) shows 

the details of a pixel. The millimeter-wavelength 

signal is received by a self-complementary, log-

periodic, broadband, sinuous antenna. [10], [11] 

Three-pole, quasi-lumped-element filters [12]–[14] 

split the signal into three bands centered around 95, 

150 and 220 GHz. Superconducting, 10 Ω, Nb, 

microstrip, transmission lines [15] distribute the 

balanced signal for each band to the appropriate 

detector island, where it is absorbed by a 20 Ω 

Ti/Au load resistor. The change in temperature of 

the island is then sensed by a Ti/Au TES. A 750 nm 

thick layer of Pd is deposited on the island to 

C 

Fig. 1. (a) SEM image of a pixel. (b) Detail around the island. All TESs are 

with a dimension of 15 m 80m in this paper. The sketch shows the cross-

section of a leg. The LSN layer was 1m before processing and it will be 

thinner in the final devices. (c) TES resistance as a function of the Ptot for 

different bands. (d) Psat as a function of the Bath Temperature Tb: 

measurements (points) and predicted trend (solid curves).  
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increase the heat capacity and stabilize the detector. 

[16] The thermal link of the TES detector is a set of

four LSN legs that support the island. The leg

length and width is designed to provide a detector

saturation power (Psat) roughly 2.5 times the

expected loading (Pload) from the sky, telescope, and

cold optics. Detailed information about the island

and the leg are shown in Fig. 1(b). Fabrication 

details for the SPT-3G detector arrays are given in     the inset in Fig. 2(b). 
Posada et al.. [17], [18] 

B. Characterization

A digital, frequency-domain, multiplexing 

scheme [19] has been developed to read out groups 

of 64 detectors using a single pair of wires, [20] 

makeing it possible to quickly evaluate the 

performance of large numbers of detectors.  

For this work, the detector performance was 

investigated using measurements of the resistance, 

(R), versus Psat for different bath (i.e., wafer or 

wafer holder) temperatures (Tb) as shown in Fig. 

1(c). Psat(Tb) is indicated by the dashed lines in Fig. 

1(c). Values of Psat(Tb) from Fig. 1(c) can be plotted, 

as in Fig. 1(d), and fitted to: [21]–[23] 

Psat= K(Tc
n - Tb

n)   (1) 

where the constant K = NkA/l, N is the number of 

legs, A is the leg cross section, l is the leg length, k 

is the thermal conductivity of the leg material, and, 

n is the index for thermal conductivity. The fit 

yields values of the parameters and the thermal 

conduction ratio G(Tc) = dPsat/dT = nKTc
n-1. Since 

the phonon noise equivalent power (NEP) [24] is 

directly related to G and Tc, it is important to keep 

Psat within a reasonable range.  

Currently in SPT-3G project, the target Tc is 510 

mK and the target Psat is 10.6 pW, 16.0 pW and 

21.0 pW for 95 GHz, 150 GHz and 220 GHz bands, 

respectively. These values are equal to twice the 

expected optical loading during normal operation, 

assuming an overall optical efficiency of 85%. They 

may be varied depending on the measured optical 

efficiency. 

III. TES PERFORMANCE

In some SPT-3G arrays, the TESs are fabricated 

on an etched SiOx surface, [17] while in others, the 

TESs are fabricated on an unetched surface. [18] 

The unetched surface gives much lower scatter in Tc, 

as shown in Figs. 2(a) and (b). It is possible that 

residual by-products and increased roughness, due 

to etching SiOx during fabrication of the Nb 

microstrip, may cause the large scatter shown in Fig. 

2(a). The TESs on etched SiOx have slightly higher 

Tc than those on unetched SiOx, due to the fact that 

the latter are prepared at a much earlier stage, so 

they encounter more fabrication processing. Heating 

during processing reduces the TES Tc, as shown in 
  

We have also investigated adding a Ti(5 

nm)/Au(5 nm) buffer layer under the TES to isolate 

the TES from the substrate. The buffer layer results 

in lower Tc, and lower scatter in Tc, for both etched 

and unetched SiOx, as shown in Figs. 2(c) and 2(d). 

In Figs. 2(c) and 2(d) the combination of the buffer 

layer and thinner Ti (100 nm for Fig. 2(c) and 150 

nm for Fig. 2(d)) gives Tc in the range 450 - 510 

mK, cf. 550-600 mK for the thicker TESs without 

buffer layer in Figs. 2(a) and 2(b).  

The small scatter in Tc in Fig. 2(b) may be due to 

a smaller number of detectors for this measurement 

(~50 for Figs. 2(a) and 2(b), cf. ~150 for Figs. 2(c) 

and 2(d)) or variations in the etch that releases the 

detector legs and islands from the Si wafer 

(releasing process). Releasing decreases Tc, 

probably due to heating of the TESs, and increases 

the scatter in Tc, as shown in Fig. 3. Fig. 3 also 

shows a larger variation in Tc with radius and band. 

Since these effects are only observed in released 

devices, they could be due to (i) excess, band-

dependent, optical loading in the measurement 

Fig. 2. Tc distribution for TESs (a) on etched SiOx, (b) on unetched SiOx, 
(c) with Ti(5nm)/Au(5nm) buffer layer on etched SiOx, (d) with 

Ti(5nm)/Au(5nm) buffer layer on unetched SiOx. TES Tc change as a function

of the baking temperature (TBake) is shown in the insert of (b). The average Tc

and standard deviation (SD) are labeled in each figure. All TESs are covered 

by 20 nm Au in this paper.
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setup, or (ii) heating of the TESs during release (or 

during final oxygen plasma cleaning to remove 

photoresist), which may depend on band because 

detectors for different bands have different leg 

lengths with different thermal conductivities. 

IV. PROPERTIES OF THE THERMAL LINK

We have fabricated two test wafers to investigate 

the effects of different film structures (Fig. 4(a-c)) 

and different leg widths and lengths (Fig. 4(d-f)), 

respectively. Fig. 4(a-c) shows results for detectors 

with (a) legs that have only LSN and Nb leads for 

reading out the TESs (black squares), (b) legs with 

LSN, the 500 nm SiOx dielectric for microstrip 

transmission line and Nb leads (blue dots), and (c) 

legs that have LSN and a complete microstrip 

transmission line (red triangles). K for detectors 

with only LSN and Nb leads is 3 times smaller than 

for the other configurations, and the microstrip Nb 

ground layer has little effect on K, as expected for a 

superconductor, so the thermal conductivity of the 

legs must be dominated by the SiOx layer, with the 

LSN contributing only ~30%.  

Since the SiOx layer thickness is constrained by 

the filter design, and the LSN layer on the legs must 

be thick enough to support the island without 

breaking, changes to the leg thermal conductivity 

may require a different leg width or length. Fig. 

4(d-f) shows measurements of detectors from a 

wafer on which ¼ of the detectors have 23% longer 

legs and ¼ have 26% narrower legs. A complete 

discussion of these results is outside the scope of 

this paper (more discussion about thermal link can 

be found in [25], [26]) and the origin of the 

scattering of K in our results is still under 

investigation. However, it is clear that K is 

approximately proportional to the ratio of leg width 

to leg length (W/L), as expected for long legs. The 

scaling of K with W/L also suggests that the islands 

and legs are fully released, i.e., the legs are the only 

thermal link between island and the substrate. A 

touch between island and the substrate would give a 

higher K for long and narrow legs than the observed 

results.  

V. CONCLUSION

In summary, we have shown that adding a thin 

Ti(5 nm)/Au(5 nm) buffer layer under a Ti/Au TES 

significantly decreases the scatter in transition 

temperature. We have demonstrated that the thermal 

conductivity of the legs that support the SPT-3G 

detector islands is dominated by the SiOx 

microstrip dielectric layer, and that the thermal 

conductivity scales as expected with leg 

width/length. These results will be used to optimize 

the performance of the TES detector arrays for the 

new SPT-3G camera. 
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